RAJASTHAN P.E.T. CHEMISTRY – 1996

1.	The required enzyme to convert glucose into alcohol is:
	(1) Diastase (2) Maltase (3) Invertase (4) Zymase
2.	Which of the following has strongest basic nature: (1) m-nitroamiline (2) p-nitroaniline (3) Aniline (4) Benzyl amine
3.	Which of the following is formed by the reaction of n-propyl bromide with alcoholic KOH: (1) Propanol (2) Propane (3) Propene (4) Propyne
4.	The free electron theory of metallic bond was given by: (1) Drude and Lorenz (2) Sommer field (3) Pauling (4) Stater
5.	By which of the following Law's 2-butene is the main product of dehydration of 2-butanol: (1) Saytzeff's law (2) Markownikoff's law (3) Anti Markownikoff's (4) Peroxide effect
6.	Which of the following is proper catalyst for alkylisation of benzene : (1) $C_6H_5NO_2$ (2) $AICI_3$ (3) Pt (4) Ni
7.	In which of the following there is some value dipole moment : (1) C_6H_6 (2) CH_4 (3) CO_2 (4) H_2O
8.	Which of the following is the last product of reduction of nitrobenzene in basic medium: (1) Hydroazo benzene (2) Aniline (3) Phenityl hydroxyl amine (4) Nitrobenzene
9.	The product of the reaction of chloroform with concentrate HNO ₃ . (1) Nitromethane (2) Nitrosyl chloride (3) Methyl nitrite (4) Chloropicrin
10.	The method of separation of a mixture of naphthalene and benzoic acid is: (1) by alcohol (2) by ether (3) by cold water (4) by Na ₂ CO ₃
11.	When C6H5OH is treated with CHCI3 and KOH salicyldehyde is formed. The reaction is
	known as:
	(1) Kolbe Schmidt reaction
	(2) Parkin reaction

(3) Gatter man (4) Riemer tier			
12. Which of the follo (1) Mg ⁺² (2	owing ion with NH ₃ give 2) Fe ⁺² (3) Cu ⁺²	e clear and coloured (4) Ag ⁺²	solution:
13. Graphite is condu	actor of electric while d	liamond is not becaus	se in graphite :
 (1) there is ion (2) there is sp³ (3) there are no (4) free electro 	free electrons		
(1) Na ⁺ , HPO ₄ (2) Na ⁺ , H ₂ PO ₄	-2	in the solution of neu	tral orthophosphoric acid :
15. Which of the follows: (1) basic proper (2) solubility in (3) reduction proper (4) stability	n water	ar in the hydroxides	of N and P:
moles of product	n this reversible reaction at equilibrium. The val		of A and B reacts to form 2-2
be:	a salt AB at 25 ⁰ C is 1.2 (2) 1.21 x 10 ⁻³ (4) 1.1 x 10 ⁻⁴	21 x 10 ^{-6.} The solubili	ity of this salt in mole/liter will
	llowing there is positive (3) C ₆ H ₆ (3) CCI ₄	re dipole moment : (4) BF ₃	
19. A compound 'A' 1 (1) CH ₃ CHO (3) CH ₃ CI	reacts with conc. H N ((2) CHCI ₃ (4) C ₆ H ₅ OH	O ₃ to form chloropicr	in, compound A is :
depends on tempe			on of a solution does not
	owing hydroxide has lead (2) Ca(OH) ₂ (3) Mg(OH		

22.	22. The oxidation states of highest electronegative element present in of $BaO_2 + H_2SO_4$ is :	the product of the reaction
	(1)-2,+1 $(2)-1-2$ $(3) 0,-1$ $(4)-2 0$	
23.	23. Which of the following is found by the reaction of concentrate H $_{2}$ (1) HIO $_{3}$ (2) HIO (3) HI (4) HIO $_{2}$	NO ₃ and iodine :
24.	24. The strongest bronsted base is: (1) CIO ₄ (2) CIO ₂ (3) CIO ₃ (4) CIO (4)	
25.	25. The value of Δ n for the below reaction will be:	
	$A(s) \underset{\leftarrow}{\rightarrow} B(g) + C(g)$	
	$(1) 0 \qquad (2) 2 \qquad \qquad (3) -1 \qquad \qquad (4) 1$	
26.	26. Which of the following is not present in germansilver : (1) Mn (2) Zn (3) Ni (4) Cu	
27.	27. The oxidation states of iodine are: $(1)-1,+1,+3,+5 \qquad (2)-1,+1,+3 \\ (3)\pm 1,+3,+5,+7 \qquad (4)-1,+1,+3,+5$	
28.	28. The IUPAC name of (CH ₃)2C H – CH ₂ – CH ₂ – Br is: (1) 1-bromo-3-3-dimethyl propane (2) 2-methyl-4-bromo butane (3)1-bromo-3-methyl butane (4) none of above	
29.	29. Which of the following is the reaction when benzaldehyde is heat presence of CH_3COONa :	ed with (CH ₃ C) ₂ O in
	(1) Gattermann reaction (2) Clasien reaction (3) Knovenagel reaction (4) Parkin reaction	
30.	 30. Methyl ketone is identified by: (1) the reaction with fehling solution (2) the reaction with benedict solution (3) heated with I₂ + Na₂CO₃ (4) none of above 	
31.	31. The testing of purity of a solid compound is done by: (1) specific density (2) crystl structure of metals (3) boiling point (4) melting point	

32. In which of the following there is no addition according to Markownikoff's law:

	(1) 1-butyne	(2) 2-butene	(3) 1-butene	(4) propene							
33.	23 gm. Of Na r (1) 1 mole of H ₂			$(3) \frac{1}{2}$ mole of O_2	(4) 1 mole of O ₂						
34.	34. SiCl ₄ is hydrolysed while CCI ₄ does not because: (1) C is more electronegative than Si (2) C and Si are of the same group (3) The structure of CCI ₄ is tetrahedral (4) There are 3d orbitals in Si										
35.	Which of the formation (1) Dimethy (2) Ethyl-mo (3) Methyl-p (4) Diethyl of	l ether ethyl ether propyl ether	med when CH	3Ona is heated with (C₂H₅l :						
36.	The poisonous (1) tetraethyl lea	_	octane (3) eth	-							
37.	Which of the fo (1) Na ₂ B ₄ O ₇ .101 (3) FeSO ₄ . (NH ₂	H_2O	(2) CaSO ₄ . 2H	_	alysis :						
38.	To which of the (1) 2-pantene	_		off law is not applical (4) propene	ble:						
39.	The minimum (1) 5C		which are req (3) 2C	uired to show chain i (4) 3C	somerism in alkyne :						
40.	The pH value of (1) both acid and			ure of the solution wi (3) acidic	ill be: (4) basic						
41.	The approxima (1) – 10	ate pH value of (2) 7		H solution will be: (4) 10							
42.	The percentage (1) 85%		bleaching po								
43.	A compound not (1) 5	-pentane is fou (2)4	ind from how (3) 2	much type of hexano (4) 3	ic acid:						
44.	Which of the fo		ent has highest (3) Br	electron affinity : (4) F							
45.	If one liter of a HNO ₃ , the norm		solution will be		$H_2SO_4 + 30$ ml. of N/3						

40	10	5	20						
46. The volume c (1) 20	oncentration o (2) 5.44	f H₂O₂ solutio (3) 11.2	on of 6.8 gm.] (4) 22.4	per 100 ml. will be:					
47. Which of the $(1) I_2$	_	_	nt : (4) F ₂						
48. Froath floatation process is used to increase the concentration of the following are : (1) Chalcopyrite (2) Calamene (3) Hematite (4) Bauxite									
 49. Acetic acid is a weak acid because: (1) 1.85 gm. ions are formed by one lakh gms. Of acetic acid (2) It is not a good conductor of electricity (3) It reacts with reactive metals (4) It is insoluble in water 									
50. Which of the (1) Ag	following is ex (2) Fe	tracted by ma (3) Hg	aking complex (4) Cu	x :					
-	he following renic salt (2) M	_		InO ₄ is disappeared: vitriol (4) Bleachin	g powder				
52. Which of the (1) HF	following bydr (2) NH ₃	ride has reduc (3) SiH ₄	cing property (4) CH ₄	:					
(1) present(2) solvate(3) present	53. The solution of sodium in liquid ammonja is appeared blue reason is: (1) presence of solvated e ⁻ (2) solvated Na ⁺ (3) presence of NH ₄ ⁺ ion (4) presence of Na atom								
54. Which of the (1) n-hexane	following has (2) n-heptane		o: so-octane	(4) n-octane					
55. The nos. of si (1) 12	gma bonds in 1 (2) 10	1-butene are: (3) 8	3	(4) 11					
56. The precipita (1) Ag	te obtained wh (2) Cu ₂ O	nen acetaldeh (3) (•	with fehling solution : (4) CuO					
_	rium constant o e reaction H ₂ -		n 2HI <u>→</u> 2HI ←← will	$H_2 + I_2$ is 0.25 then the l be :	equilibrium				
(1) 4	(2) 3	(3) 2	(4) 1						
58. The similarity (1) delocal	y of C-bonds in lised π electrons		ue to :						

	` /	sed chain s	structure of 6			ps		
59.	Primary amino (1) cyanide		acts with CH 2) isocyante				e (4) isocyanide	
	. , ,	`	=) 1500 junite		(3) 1500	ino o y ama co	(1) isocyamiae	
60.	The solid meth (1) not possible		2) amphoteric		(3) bas	ic (4)) acidic	
61.	(2) magneti(3) relative	properties c propertie density of	ss is depend u of ore particle es of ore particles ore particles hich ore partic	es cles	ome we	·t		
62.	Which of the f (1) Li ⁺	collowing i (2) Ca ⁺²	,	_		-	:	
63.	The size of the (1) pyramidal	_		(3) tetr	ahedral	(4) triangular	
64.	Which of the f (1) covalen (2) covalen (3) covalen (4) ionic bo	t and coord t and ionic t bond	dinate bond	nt in N	I_2O_5 :			
65.	By the theory (1) 4d	_	(3) 3f	which o	of the fo (4) 3d	llowing o	rbital is not possible :	
66.	Which of the f (1) Na ₅ [Ag(S ₂ C (3) Na ₂ [Ag(S ₂ C	$[O_3)]_6$	compound is (2) Na ₃ (4) Na ₃	$[Ag(S_2)]$	$O_3)_2]$	AgCI is d	lissolved in hypo :	
67.	Natural gas is (1) a mixtur (2) n-octand (3) n-butand (4) none of	re of metha e e	ane and octan	e				
68.		a weak acid have 3d o lecular bo	d	e strong))			
69.	Which of the f	ollowing 1	molecule is no	ot pyra	midal :			

	$(1) PH_3$	(2) NH ₃	(3) NCI ₃	(4) BC	I_3	
70.	Berylium carbi	de on hydroly (2) Acetylene	_	(4) Me	thyl acetylene	
71.	The best way to (1) Mole fractio	_	e concentration plarity (3) No			
72.	A one liter solu 1.8 x 10⁻⁵ then (1) 5.60	the pH value o	f the solution		:	I. P_{ka} value of acetic acid is
73.	. Which of the fo	ollowing flux is (2) lime stone			n of iron: (4) silica	
74.	be:	is dissolved in	1000 gm. of p	ure wat	er then the mo	ole fraction of the water will
	(1) 1000	(2) .999	(3) 0.9	98	(4) 1.00	
	(2) lower siz (3) regular t	affinity of C ar ze of C and CI etrahedral struc ructure of mole	nd CI are equal eture ecule			
70.	(1) Cu and Cr		and Fe		and Os	(4) Cu and Zn
77.	(1) irregular (2) square p (3) tetrahedi (4) triangula	octahedral laner ral	de is :			
78.	C ₅ H ₁₀ O reacts name of it is: (1) secondary al				silver and iod (4) primary al	oform test. The possible
79 .	Which of the form $(1) - NH_2$	ollowing is met (2) –CH ₃	_	oup : (4) -N	${ m O}_2$	
80.	. The work of so		.1 14			
	(1) to toning	_	(3) as reducin			oer
81.	(1) to toning . Which of the form (1) chain	(2) to do still ollowing isome	(3) as reducin	g agent t in lact	(4) as develop	per

	(1) Benzene	(2) Benzaldehyde	(3) Aniline	(4) Phenol
83.	_	nic acid is heated with (2) Benzoic acid		
84.	When benzened (1) Diazobenzene	liazonium chloride i e (2) Nitrobenz		
85.	~	following method s (2) HNO ₃ (3)To	_	_
86.	(1) filter funr (2) fractional (3) steam dis (4) none of a	distillation tillation	e following met	thod:
87.	(1) extraction	crystallization on	lity is separate	d by :
88.	(1) Clemmen (2) Decarbos	nson's reduction ylation electrolysis method	presence of an	hydrous ether is known as :
89.	_	the reaction of CH ₂ : (2) propanol		Basic KMnO ₄ solution will be: slycol (4) ethyl alcohol
90.	_	cal isomers of a com		two chiral carbon atoms are : (4) 2
91.		C		titration of Na ₂ CO ₃ and H ₂ SO ₄ : enolphthalein (4) Methyl orange
92.	Osmosis pressur (1) $\frac{P}{C} = RT$		$(3) R = \underline{PT} \\ C$	$(4) P = \frac{RC}{T}$
93.		following salt if dilu (2) (NH) ₂ SO ₄		ed there is no change in pH : (4) K ₂ CO ₃
94.	Formula of oleu (1) H ₂ S ₂ O ₈	om is: $(2) H_2SO_5$ $(3) H_2$	₂ S ₂ O ₄	(4) $S_2S_2O_7$

		•	of CHIO		(2) Cl O	(1						-
	(1) Cl ₂ C	9 6	$(2) \operatorname{Cl}_2($) ((3) Cl_2O_7	(4) All					
96.	(1) 1 (2) 1 (3) 1	Methyl Ethyl m Methox	ethyl keto ethyl etho yethane methane	one	₂ H ₅ :							
		•	mers are	-	_	I ₁₀ O:						
98.	The hy l(1) sp ³ d	oridiza ²	tion of B (2) sp ³ d	r in BrF	F_5 is: (3) $\operatorname{sp}^2 d$	(4) sp ³					
	A neutr 90X ²³³ :	on is a	dded in a	ın eleme	ent 90X ²³	² . How	many ββ	particles	is to be	remove	ed, to for	m it
			(2) 3	((3) 1	(4) 2					
	. Electi found a		of the fus e:	sed mixt			and Al ₂ 0		Al at ca	thode. V	What wil	l be
		1.(4)	2.(4)	3.(3)	4.(1)	5.(1)	6.(2)	7.(4)	8.(1)	9.(4)	10.(4)	11.(4)

ANDWERSHEET											
1.(4)	2.(4)	3.(3)	4.(1)	5.(1)	6.(2)	7.(4)	8.(1)	9.(4)	10.(4)	11.(4)	
12.(1)	13.(4)	14.(3)	15.(3)	16.(1)	17.(1)	18.(1)	19.(2)	20.(1)	21.(4)	22.(2)	
23.(4)	24.(1)	25.(2)	26.(1)	27.(3)	28.(3)	29.(4)	30.(1)	31.(1)	32.(2)	33.(4)	
34.(4)	35.(2)	36.(1)	37.(1)	38.(2)	39.(1)	40.(3)	41.(2)	42.(2)	43.(4)	44.(2)	
45.(1)	46.(4)	47.(4)	48.(1)	49.(1)	50.(1)	51.(4)	52.(2)	53.(1)	54.(2)	55.(4)	
56.(2)	57.(1)	58.(1)	59.(4)	60.(1)	61.(4)	62.(1)	63.(3)	64.(1)	65.(3)	66.(2)	
67.(4)	68.(2)	69.(4)	70.(2)	71.(3)	72.(2)	73.(3)	74.(4)	75.(4)	76.(4)	77.(2)	
78.(3)	79.(4)	80.(3)	81.(4)	82.(4)	83.(4)	84.(4)	85.(4)	86.(3)	87.(2)	88.(4)	
89.(3)	90.(2)	91.(4)	92.(1)	93.(3)	94.(4)	95.(3)	96.(3)	97.(1)	98.(1)	99.(4)	
100(4)											