Reg. No. _____

Karunya University

(Karunya Institute of Technology and Sciences)

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

End Semester Examination – April/May 2010

Subject Title : DIGITAL ELECTRONICS Subject Code: EC209 Time : 3 hours Maximum Marks: 100

<u>Answer ALL questions</u> <u>PART – A (10 x 1 = 10 MARKS)</u>

- 1. Represent -9 with 8 bits in signed 1's complement representation.
- 2. State duality property of Boolean algebra.
- 3. Give the truth table of half subtractor.
- 4. What are universal gates?
- 5. Write the characteristic equation of JK flip flop.
- 6. What is a shift register?
- 7. How is T flip flop obtained from JK flip flop?
- 8. Define race condition.
- 9. State the difference between PLA and PAL.
- 10. Define fan out of any logic.

$\underline{PART} - \underline{B} \quad (5 \ge 3 = 15 \text{ MARKS})$

- 11. Express the Boolean function F=A+B'C in sum of minterms rotation.
- 12. Implement the following Boolean function using 4 to 1 Multiplexer. F(A,B,C)= $\sum (1,3,5,6)$
- 13. What is shift register? Draw the circuit of a serial input serial output shift register.
- 14. Compare Mealy and Moore models.
- 15. How write and read operations are performed in RAM?

PART – C $(5 \times 15 = 75 \text{ MARKS})$

16.	a.	Minimize the function		
		$f(A,B,C,D) = \Pi M(0,1,2,3,4,7,8,11,12,14,15)$	(11)	
	b.	Convert: (AA1) ₁₆ to decimal and octal numbers	(4)	
		(OR)		
17.	a.	Express $f(A, B, C, D) = AB + A'BC + C'D$ as the SOP and the POS.	(8)	
	b.	Prove the following Boolean identities		
		i. $A'O B = A \oplus B$ b. $A \oplus B \oplus A = A + B$	(7)	
18.	a.	Implement a full adder adder with a decoder and two OR gates.	(7)	
	b.	Design a 4 input priority encoder.	(8)	
		(OR)		
19.	Wr	Write short notes on the following:		
	a.	4 bit magnitude comparator.	(10)	
	b.	Parity generation and checking.	(5)	
20	W 71-	at is a Elin flan? Evaluin its types briefly		

20. What is a Flip flop? Explain its types briefly.

(OR)

- 21. Give in detail about the following
 - a. Timing signal generation in counters (7)(8)
 - b. Ring counter
- 22. Design a synchronous Mod-5 counter using Master Slave JK flip flops to run through the states 010,011,100,101 and 110 only. Also realize the circuit using JK flip flop and basic gates.

(OR)

- 23. Obtain reduced flow table of a negative edge triggered T flip flop which has 2 inputs Toggle (T) and Clock (C) and one output Q. The output is complemented if T=1 and C changes from 1 to 0. Otherwise under any other input condition, the output Q remains unchanged.
- 24. Using PAL, Design a combinational circuit with Boolean functions w(A,B,C,D) = $\sum (2,12,13)$ $x(A,B,C,D) = \sum_{i=1}^{n} (7,8,9,10,11,12,13,14,15)$ $y(A,B,C,D) = \sum (0,2,3,4,5,6,7,8,10,11,15)$ $z(A,B,C,D) = \sum (1,2,8,12,13)$

25. Discuss in detail about TTL gates.