\qquad
Karunya University
(Declared as Deemed to be University under Sec. 3 of the UGC Act, 1956)
(Anna University batch)

End Semester Examination - November / December 2008

Subject Title: DIGITAL ELECTRONICS Subject Code: EC209

Time : $\mathbf{3}$ hours
Maximum Marks: 60

Answer ALL questions

PART - A ($10 \times 1=10$ MARKS)

1. Convert the binary number $(110100)_{2}$ into gray code.
2. Explain De-Morgan's theorem.
3. Perform half adder using 2×4 multiplexer.
4. \qquad gate is used for half adder.
5. Name two asynchronous counters.
6. The number of flip-flops required for a Mod-16 ring counter are \qquad .
7. When the circuit is not controlled by the clock, the transition from one state to next occurs when ever there is a change in the input to the circuit at any time and hence this circuit is called as \qquad
8. circuits are referred as finite state machine.
9. Fan-in of a logic gate is nothing but the \qquad
10. The fastest logic family is \qquad

PART - B ($5 \times 2=10$ MARKS)

11. Convert (274.2875) ${ }_{10}$ to binary.
12. Implement half adder using NAND gates only.
13. Differentiate combinational circuits and sequential circuits.
14. Define state change.
15. Define Propagation delay.

PART - C ($5 \times 8=40$ MARKS $)$

16. Simplify the Boolean function $f(A, B, C, D)=\Sigma(0,2,3,5,6,7,8,9)$ with $10,11,12,13,14,15$ as don't cares
(OR)
17. Simplify and minimize the following four-variable switching function using Quine-McClusky tabulation method. $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,1,2,3,4,6,8,9,10,11)$
18. Design a comparator, which compares the magnitude of two numbers X and Y , each consisting of two bits and giving three outputs $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ such that
$\mathrm{F}_{1}=1$ if $\mathrm{X}>\mathrm{Y}$
$F_{2}=1$ if $X=Y$
$\mathrm{F}_{3}=1$ if $\mathrm{X}<\mathrm{Y}$
(OR)
19. Realize the function $\Sigma(0,1,3,5,11,15)$ using multiplexer
20. Explain the working of master slave J-K flip-flop
21. Design a synchronous Mod-5 counter using J-K flip-flop to run through the states 001,010,011,100 and 101 only.
22. Design a sequence detector that produces an output 1 whenever the sequence 101101 is detected (OR)
23. Analyse the synchronous sequential circuit shown in figure and draw the state diagram.

24. Implement the following Boolean expression using PLA

$$
\begin{aligned}
& \mathrm{Y}_{1}=\mathrm{ABC}^{\prime}+\mathrm{A}^{\prime} \mathrm{B} \\
& \mathrm{Y}_{2}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}+\mathrm{AC}
\end{aligned}
$$

(OR)
25. Explain the operation of TTL Nand gate.

