$\qquad$

## Karunya University

(Declared as Deemed to be University under Sec. 3 of the UGC Act, 1956)

## End Semester Examination - November / December 2009

Subject Title: DIGITAL ELECTRONICS
Time : $\mathbf{3}$ hours
Subject Code: EC209
Maximum Marks: 100

## Answer ALL questions PART - A ( $10 \times 1=10 \mathrm{MARKS})$

1. Convert the given Hexadecimal number $(\mathrm{B} 65 \mathrm{~F})_{16}$ into an equivalent decimal number.
2. Prove that $\mathrm{x}+1=1$ using Boolean algebra postulates.
3. Implement NOT gate using NOR gate.
4. Draw the circuit of a half adder.
5. What is a flip-flop?
6. Mention the characteristic table of D flip-flop.
7. What is the use of state table?
8. Indicate the excitation table of T flip-flop.
9. The propagation delay of standard TTL is $\qquad$ .
10. What is the main advantage of using Integrated Injection Logic (IIL)?

## $\underline{\text { PART - B ( } 5 \times 3=15 \text { MARKS) }}$

11. Simplify the Boolean function $\mathrm{F}=\mathrm{x}^{\prime} \mathrm{yz}+\mathrm{x}^{\prime} \mathrm{yz}{ }^{\prime}+\mathrm{xy} y^{\prime} \mathrm{z}^{\prime}+\mathrm{xy}{ }^{\prime} \mathrm{z}$
12. Design a full adder circuit from its function table.
13. Draw the circuit of 4-bit ring counter and explain its operation.
14. What is the need for state reduction?
15. What are the various types of output configurations supported in TTL gates?

## PART - C ( $5 \times 15=75$ MARKS $)$

16. Simplify the following Boolean functions using K-Map:
a. $\quad \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,2,4,5,6,8,9,12,13,14)$
b. $\quad \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(1,3,7,11,15) ; \mathrm{d}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,5)$
(OR)
17. Simplify the following Boolean functions using Quine-McCluskey method.
$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,2,8,10,11,14,15)$
18. Draw the combinational logic circuit of 4-bit magnitude comparator and explain its operation in detail.
(OR)
19. a. Design a 4 to 1 multiplexer circuit and explain its operation.
b. Implement the given function using $4 \times 1$ multiplexer $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma(1,3,5,6)$
20. With neat diagram, explain the operation of 4-bit binary ripple counter in detail.
(OR)
21. With neat diagram, explain the operation of synchronous BCD counter in detail.
22. Design a 3-bit synchronous counter with the proper excitation table using T flip-flop.
(OR)
23. Design a modulo-5 synchronous counter using J-K flip-flop.
24. A combinational circuit is defined by the functions: $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma(3,5,6,7)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma(0,2,4,7)$. Implement the circuit with a PLA having three inputs, four product terms and two outputs.
(OR)
25. With neat internal diagram, explain the operation of basic gate of Emitter Coupled Logic family.
