IITJEE CHEMISTRY SAMPLE PAPER - I **Data required :** Mass Number : H = 1, C = 12, Cl = 35.5 Gas constant : 0.0821 l atm K⁻¹ mol⁻¹ 8.314 JK⁻¹mol⁻¹ Straight Objective Type iple choice question This section contains 8 multiple choice questions numbered 1 to 8. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct. - (a) S atom has sp³d hybridization. - (c) O atom is present at one of the equatorial position. (d) There is no lone pair on S - (b) It is prepared by acidifying an aqueous solution of borax. (c) It has a layer structure in which planer PO (c) It has a layer structure in which planar BO₃ units are joined by hydrogen bonds. - (d) It does not act as proton donor as it acts as a Lewis acid by accepting hydroxyl ions. $$A(g) \xrightarrow{k_1} 3B(g) ; B(g) \xrightarrow{k_3} C(g)$$ Entrance If the reaction occurred with individual rate constants k₁, k₂ and k₃, determine activation energy for the overall reaction if the activation energies associated with these rate constants are $E_{a_1} = 180 \text{ kJ mole}^{-1}$, $E_{a_2} = 90 \text{ kJ mole}^{-1}$ and $E_{a_3} = 40 \text{ kJ mole}^{-1}$. (a) 310 kJ (b) -10 kJ Entrance (c) 130 kJ (d) 70 kJ - **4.** 0.1M solution of three different sodium salts NaX, NaY and NaZ have pH values 7.0, 9.0 and 11.0 respectively. The correct order of dissociation constant values of these acids is - (a) $K_{HX} > K_{HY} > K_{HZ}$ $(b) \ K_{HX} < K_{HY} > K_{HZ}$ (c) $K_{HX} < K_{HY} < K_{HZ}$ - (d) $K_{HX} > K_{HZ} > K_{HY}$ - 5. When one mole of an ideal gas is compressed to half of its initial volume and simultaneously heated to twice its initial temperature, the change in entropy (ΔS) is - (a) C_v ln 2 - (b) C_p ln 2 - (c) R ln 2 - (d) $(C_v R) \ln 2$ - **6.** Which of the following statement is correct? - (a) H_3C H CH_3 and H_3C H are enantiomers. - (b) H_3C H CH_3 and H_3C H CH_3 enantiomers. - (c) H_3C H_3 - (d) All are correct. - 7. $CH_3CH_2-CH=CH_2 \xrightarrow{NBS} (X) \xrightarrow{alc. KOH} (Y)$ - The compound (Y) is - (a) But-3-en-2-ol - (b) But-3-en-1-ol - (c) 1, 3-Butadiene - (d) 1,2-Butadiene - 8. $(X) + Mg \xrightarrow{\text{dry}} (Y) \xrightarrow{\text{(ii) } H_3O^+} CH_3CH_2CH_2-OH$ Identify (X) and (Z) in the above sequence of reaction, (a) CH₃CH₂Br and HCHO (b) CH₃Br and CH₂-CH-CH₃ Entrance (c) CH₃Br and CH₃CH₂CHO Entrance (d) CH₃Br and CH₃CHO ## **SECTION – II Reasoning Type** This section contains 4 reasoning type questions numbered 9 to 12. Each question contains Statement-1 and Statement-2. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct. | | Directions: | Read | the f | ollowing | questions | and | choose | |--|--------------------|------|-------|----------|-----------|-----|--------| |--|--------------------|------|-------|----------|-----------|-----|--------| - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. - (B) Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. - (C) Statement-1 is True, Statement-2 is False. - (**D**) Statement-1 is False, Statement-2 is True. - 9. Statement-1: Adding an inert gas to dissociation equilibrium of gaseous N_2O_4 at constant pressure and temperature increases the dissociation. **Statement-2:** Molar concentration of the reactants and products decreases on the addition of inert gas. (a) A - (b) B - (c) C - (d) D - 10. Statement-1: Cs can be used as cathode in photoelectric cells. Statement-2: Alkali metals have very low ionization energies. (a) A - (b) B - (c) C - (d) D - 11. Statement-1: Nitration of aniline can be done by protecting –NH₂ group by acetylation. Statement-2: Aniline ring being electron rich is oxidized by concentrated HNO₃. (a) A - (b) B - (c) C - (d) D - 12. Statement-1: $CHO \xrightarrow{NaOH(50\%)} CHO$ is an example of intramolecular Cannizzaro reaction. **Statement-2:** In Cannizzaro's reaction aldehyde must have an α -H atom. (a) A (b) B Entrance - (c) C - (d) D #### **SECTION-III** #### **Linked Comprehension Type** This section contains 2 paragraphs C_{13} – C_{18} . Based upon the paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct. #### Passage-I Mild oxidizing agents, e.g. bromine water, Tollen's reagent, Fehling's solution etc., oxidize aldoses into aldonic acid. Both glucose and fructose can be oxidized by Tollen's reagent and Fehling's solution despite the presence of a keto group in fructose. Strong oxidizing agents like conc. HNO₃ oxidizes glucose to a dibasic acid. Fructose under similar conditions is also oxidized. All carbohydrates are quantitatively oxidized by lead tetraacetate or periodic acid. This reaction is used to elucidate the structure of carbohydrates. Both glucose and fructose can be reduced by red P/HI, LiAlH₄, Clemmensen and Wolff-Kishner reduction. - 13. Which of the following cannot be oxidized by bromine water? - (a) D-arabinose (b) D-glyceraldehyde (c) L-glucose - (d) L-fructose - 14. Number of moles of lead tetraacetate required to oxidize 100 ml of 0.1M fructose solution are - (a) 0.01 (b) 0.03 (c) 0.05 - (d) 0.06 - **15.** Fructose on oxidation with conc. HNO₃ gives Entrance (a) saccharic acid (b) tartaric acid (c) glycollic acid (d) both (b) and (c) ### Passage-II The emission of electrons from a metal surface when exposed to light radiations of appropriate wavelength is called photoelectric effect. The emitted electrons are called photoelectrons. Work function or threshold energy may be defined as the minimum amount of energy required to eject electrons from a metal surface. According to Einstein- Maximum kinetic energy of ejected electron = absorbed energy – work function $$\frac{1}{2} m v_{max}^{2} = h(v) - h(v_{0}) = hc \left[\frac{1}{\lambda} - \frac{1}{\lambda_{0}} \right]$$ where v_0 and λ_0 are threshold frequency and threshold wavelength. Stopping potential: It is the minimum potential at which the photoelectric current becomes zero. In the photoelectric effect, the slope of straight line graph between stopping potential (V_0) and frequency of incident light (v) gives A B 17. The stopping potential as a function of frequency is plotted for two different photoelectric surfaces A and B. The graph shows that the work function A is **18.** The following figure indicates the energy levels of a certain atom. When the system moves from 2E level to E, a photon of wavelength λ is emitted. The wavelength of photon produced during the transition from energy level 4E/3 to E is Entrance (c) $\frac{4\lambda}{3}$ (d) 3λ Entrance 1 ### **SECTION-IV** Matrix-Match Type This section contains 2 questions. Each question contains statements given in two columns which have to be matched. Statements (A), (B), (C), (D) in Column I have to be matched with statements (1, 2, 3, 4) in Column II. One statement in first column has one or more than one match with the statements in second column. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-1,3, B-3, C-2,3 and D-2,4, then the correctly bubbled 4×4 matrix should be as follows: 1. | le/cr | Column I | | Column II | |------------------------|----------|----|--------------------------| | (A) Starch | | 1. | Polymers of α-amino acid | | (B) Nylon –6 | 5 | 2. | Polymer of α-D-Glucose | | (C) Proteins | | 3. | Polyamide | | (D) Natural r | ubber | 4. | Isoprene | | (-) | -106 | | 1 | |------------|------------------------|----|----------------------| | 2. | & Entrain | | | | | Column I | | Column II | | (A) | Multimolecular colloid | 1. | Sulphur | | (B) | Physical adsorption | 2. | Protein | | (C) | Chemical adsorption | 3. | Reversible process | | (D) | Macromolecular colloid | 4. | Irreversible process | # SECTION-V Subjective or Numerical Type The answer to these questions would lie between 0 to 9999. For any answer all four bubbles must be filled, for example if you plan to answer as 16 then fill 0016 and if you plan to answer 0 then fill 0000 in the grid provided in answer sheet. In case the answer is a fraction, round it off to the nearest whole number. For example, 725.3 is rounded off to 0725. Any incomplete filling will be considered as incorrect filling. Illustration: If you want to fill 2379 as your answer then it will be filled as itrance Entrance | 0 | 0 | 0 | 0 | |---------------------------------|----------------------------|-----------------------|--------------------------------------| | 0 1 | 1 | 1 | 1 | | , | 2 | | 2 | | 3 | , | 2
3
4
5
6 | 1
2
3
4
5
6
7
8 | | 4 | 4 | 4 | 4 | | 5 | 5 | 5 | 5 | | 6 | 6 | 6 | 6 | | 7 | 7 | , | 7 | | 3
4
5
6
7
8
9 | 4
5
6
7
8
9 | 8 | 8 | | 9 | 9 | 8
9 | , | - 1. The equivalent weight of an element is 9. Its chloride has a vapour density 66.75. What is valency of the element? - A cylinder contains 15 kg of butane gas at 27°C and 10 atmospheric pressure. It was leaking and its pressure fell down 8 atmospheric pressure after one day. What amount of the gas (in kg) is leaked out? Space for rough work Entrance