

outer Science and Engineering - 2010

Full Paper

1. Let G = (V, E) be a graph. Define ξ (G) = $\sum_{d} i_d \times d$ where i_d is the number of vertices of

degree d in G. If S and T are two different trees with $\xi(S) = \xi(T)$, then

- 1) |S| = 2|T|
- 2) |S| = |T| 1
- 3) |S| = |T|
- 4) |S| = |T| + 1
- 2. Newton-Raphson method is used to compute a root of the equation x^2 13 = 0 with 3.5 as the initial value. The approximation after one iteration is
 - 1) 3.575
 - 2) 3.676
 - 3) 3.667
 - 4) 3.607
- 3. What is the possible number of reflexive relations on a set of 5 elements?
 - 1) 210
 - 2) 2¹⁵
 - 3) 2²⁰
 - 4) 2²⁵
- 4. Consider the set S = {1, ω , ω^2 }, where ω and ω^2 are cube roots of unity. If * denotes the multiplication operation, the structure (S, *) forms
 - 1) A group
 - 2) A ring
 - 3) An integral domain
 - 4) A field
- 5. What is the value of $\lim_{n \to \infty} \left(1 \frac{1}{n}\right)^{2n}$?
 - 1) 0
 - $^{2)}e^{-2}$
 - 3) $e^{-1/2}$
 - 4) 1

- 6. The minterm expansion of f (P, Q, R) = PQ + $Q\overline{R}$ + $P\overline{R}$ is
 - 1) $m_2 + m_4 + m_6 + m_7$
 - 2) $m_0 + m_1 + m_3 + m_5$
 - 3) $m_0 + m_1 + m_6 + m_7$
 - 4) $m_2 + m_3 + m_4 + m_5$
- 7. A main memory unit with a capacity of 4 megabytes is built using $1M \times 1$ -bit DRAM chips. Each DRAM chip has 1K rows of cells with 1K cells in each row. The time taken for a single refresh operation is 100 nanoseconds. The time required to perform one refresh operation on all the cells in the memory unit is
 - 1) 100 nanoseconds
 - 2) 100*2¹⁰ nanoseconds
 - 3) 100*2²⁰ nanoseconds
 - 4) 3200*2²⁰ nanoseconds
- 8. P is a 16-bit signed integer. The 2's complement representation of P is (F87B)₁₆. The 2's complement representation of 8*P is
 - 1) (C3D8)₁₆
 - 2) (187B)₁₆
 - 3) (F878)₁₆
 - 4) (987B)₁₆
- 9. The Boolean expression for the output f of the multiplexer shown below is

- 1) P⊕Q⊕R
- 2) P ⊕ Q ⊕ R
- 3) P + Q + R
- 4) $\overline{P + Q + R}$
- 10. In a binary tree with n nodes, every node has an odd number of descendants. Every node is considered to be its own descendant. What is the number of nodes in the tree that have exactly one child?

- 1) 0
- 2) 1
- 3) (n 1)/2
- 4) n 1
- 11. What does the following program print?

12. Two alternative packages A and B are available for processing a database having 10^k records. Package A requires $0.0001n^2$ time units and package B requires $10nlog_{10}n$ time units to process n records. What is the smallest value of k for which package B will be preferred over A?

1) 12

3) 0 14) 0 2

- 2) 10
- 3) 6

4) 5

ers.com

13. Which data structure in a compiler is used for managing information about variables and their attributes?

- 1) Abstract syntax tree
- 2) Symbol table
- 3) Semantic stack
- 4) Parse table

14. Which languages necessarily need heap allocation in the runtime environment?

- 1) Those that support recursion
- 2) Those that use dynamic scoping
- 3) Those that allow dynamic data structures
- 4) Those that use global variables

15. One of the header fields in an IP datagram is the Time to Live (TTL) field. Which of the following statements best explains the need for this field?

1) It can be used to prioritize packets

- 2) It can be used to reduce delays
- 3) It can be used to optimize throughput
- 4) It can be used to prevent packet looping
- 16. Which one of the following is not a client server application?
 - 1) Internet chat
 - 2) Web browsing
 - 3) E-mail
 - 4) Ping
- 17. Let L1 be a recursive language. Let L2 and L3 be languages that are recursively enumerable but not recursive. Which of the following statements is not necessarily true?
 - 1) L2 L1 is recursively enumerable
 - 2) L1 L3 is recursively enumerable
 - 3) L2 ∩ L1 is recursively enumerable
 - 4) L2 U L1 is recursively enumerable
- 18. Consider a B⁺ -tree in which the maximum number of keys in a node is 5. What is the minimum number of keys in any non-root node?
 - 1) 1

2) 2

- 3) 3
- 4) 4
- 19. A relational schema for a train reservation database is given below Passenger (pid, pname, age)

Reservation (pid, cass, tid)

Table :Passenger				
pid	pname	Age		
0	'Sachin'	65		
1	'Rahul'	66		
2	'Sourav'	67		
3	'Anil'	69		

Table :Reservation				
pid	class	tid		
0	'AC'	8200		
1	'AC'	8201		
2	'SC'	8201		
5	'AC'	8203		
1	'SC'	8204		
3	'AC'	8202		

What pids are returned by the following SQL query for the above instance of the tables?

SELECT pid

FROM Reservation WHERE class 'AC' AND

EXISTS (SELECT *

FROM Passenger WHERE age > 65 AND Passenger.pid = Reservation.pid)

- 1) 1, 0
- 2) 1, 2
- 3) 1, 3
- 4) 1, 5
- 20. Which of the following concurrency control protocols ensure both conflict serializability and freedom from deadlock?
 - 1. 2-phase locking
 - 2. Time-stamp ordering
 - 1) 1 only
 - 2) 2 only
 - 3) Both 1 and 2
 - 4) Neither 1 nor 2
- 21. The cyclomatic complexity of each of the modules A and B shown below is 10. What is the cyclomatic complexity of the sequential integration shown on the right hand side?

22. What is the appropriate pairing of items in the two columns listing various activities encountered in a software life cycle ?

4) 10

Р	Requirements Capture		Module Development and Integration
Q	Design	2	Domain Analysis
R	Implementation	3	Structural and Behavioral Modeling
S	Maintenance	4	Performance Tuning

- 1) P-3, Q-2, R-4, S-1
- 2) P-2, Q-3, R-1, S-4
- 3) P-3, Q-2, R-1, S-4
- 4) P-2, Q-3, R-4, S-1
- 23. Consider the methods used by processes P1 and P2 for accessing their critical sections whenever needed, as given below. The initial values of shared boolean variables S1 and

S2 are randomly assigned.

Method used by P1	Method used by P2
while (S1 = = S2);	while (S1 != S2);
Critical Section	Critical Section
S1 = S2 ;	S2 = not (S1);

Which one of the following statements describes the properties achieved?

- 1) Mutual exclusion but not progress
- 2) Progress but not mutual exclusion
- 3) Neither mutual exclusion nor progress
- 4) Both mutual exclusion and progress
- 24. A system uses FIFO policy for page replacement. It has 4 page frames with no pages loaded to begin with. The system first accesses 100 distinct pages in some order and then accesses the same 100 pages but now in the reverse order. How many page faults will occur?
 - 1) 196
- 2) 192
- 3) 197
- 4) 195

- 25. Which of the following statements are true?
 - 1. Shortest remaining time first scheduling may cause starvation
 - 2. Preemptive scheduling may cause starvation
 - 3. Round robin is better than FCFS in terms of response time
 - 1) 1 only
 - 2) 1 and 3 only
 - 3) 2 and 3 only
 - 4) 1, 2 and 3
- 26. Consider a company that assembles computers. The probability of a faulty assembly of any computer is p. The company therefore subjects each computer to a testing process. This testing process gives the correct result for any computer with a probability of q. What is the probability of a computer being declared faulty?
 - 1) pq + (1 p) (1 q)
 - 2) (1 q)p
 - 3) (1 p)q
 - 4) pq
- 27. What is the probability that divisor of 10^{99} is a multiple of 10^{96} ?
 - 1) 1/625
 - 2) 4/625
 - 3) 12/625
 - 4) 16/625
- 28. The degree sequence of a simple graph is the sequence of the degrees of the nodes in the graph in decreasing order. Which of the following sequences can not be the degree sequence of any graph?

- 1) I and II
- 2) III and IV
- 3) IV only
- 4) II and IV
- 29. Consider the following matrix

$$A = \begin{bmatrix} 2 & 3 \\ x & y \end{bmatrix}$$

If the eigenvalues of A are 4 and 8, then

1)
$$x = 4$$
, $y = 10$

2)
$$x = 5$$
, $y = 8$

3)
$$x = -3$$
, $y = 9$

4)
$$x = -4$$
, $y = 10$

- 30. Suppose the predicate F(x, y, t) is used to represent the statement that person x can fool person y at time t. Which one of the statements below expresses best the meaning of the formula $\forall x \exists y \exists t (\neg F(x, y, t))$?
 - 1) Everyone can fool some person at some time
 - 2) No one can fool everyone all the time
 - 3) Everyone cannot fool some person all the time
 - 4) No one can fool some person at some time
- 31. What is the Boolean expression for the output f of the combinational logic circuit of NOR gates given below?

- 1) $\overline{Q + R}$
- 2) $\overline{P+Q}$
- 3) $\overline{P+R}$
- 4) $\overline{P + Q + R}$
- 32. In the sequential circuit shown below, if the initial value of the output Q_1Q_0 is 00, what are the next four values of Q_1Q_0 ?

- 1) 11, 10, 01, 00
- 2) 10, 11, 01, 00
- 3) 10, 00, 01, 11
- 4) 11, 10, 00, 01
- 33. A 5-stage pipelined processor has Instruction Fetch (IF), Instruction Decode (ID), Operand Fetch (OF), Perform Operation (PO) and Write Operand (WO) stages. The IF, ID, OF and WO stages take 1 clock cycle each for any instruction. The PO stage takes 1 clock cycle for ADD and SUB instructions, 3 clock cycles for MUL instruction, and 6 clock cycles for DIV instruction respectively. Operand forwarding is used in the pipeline. What is the number of clock cycles needed to execute the following sequence of instructions?

	Instruction	Meaning of instruction		
l ₀	MUL R_2 , R_0 , R_1	$R_2 \leftarrow R_0 * R_1$		
I_1	DIV R ₅ , R ₃ , R ₄	$R_5 \leftarrow R_3/R_4$		
l ₂	ADD R ₂ , R ₅ , R ₂	$R_2 \leftarrow R_5 + R_2$		
l ₃	SUB R_5 , R_2 , R_6	$R_5 \leftarrow R_2 - R_6$		
1)	13	2) 15	3) 17	4) 19

- 34. The weight of a sequence a_0 , a_1 , ..., a_{n-1} of real numbers is defined as $n_0 + n_1/2 + ... + a_{n-1}/2^{n-1}$. A subsequence of a sequence is obtained by deleting some elements from the sequence, keeping the order of the remaining elements the same. Let X denote the maximum possible weight of a subsequence of a_0 , a_1 , ..., a_{n-1} . Then X is equal to
 - 1) $max (Y, a_0 + Y)$
 - 2) max $(Y, a_0 + Y/2)$
 - 3) max $(Y, a_0 + 2Y)$

```
4) a_0 + Y/2
```

```
35. What is the value printed by the following C program?
    # include <stdio.h>
    int f(int * a, int n)
    {
          if (n \le 0) return 0;
          else if(^*a % 2 = = 0) return ^*a + f(a + 1, n - 1);
          else return * a - f(a + 1, n - 1);
    int main ()
          int a[] = \{12, 7, 13, 4, 11, 6\};
          print f ("%d", f(a, 6));
          return 0;
   }
     1) -9
                            2) 5
                                                    3) 15
                                                                            4) 19
36. The following C function takes a simply-linked list as input argument. It modifies the list by
    moving the last element to the front of the list and returns the modified list. Some part of
    the code is left blank.
    typedef struct node {
          int value;
          struct node *next;
        Node:
    Node *move_to_front(Node *head) {
          Node *p, *q;
          if ((head = = NULL: || (head->next = = NULL)) return head;
          q = NULL; p = head;
          while (p-> next != NULL) {
                 q=P;
                 p=p->next;
    return head;
    Choose the correct alternative to replace the blank line.
     1) q = NULL; p->next = head; head = p;
     2) q->next = NULL; head = p; p->next = head;
     3) head = p; p->next = q; q->next = NULL;
     4) q->next = NULL; p->next = head; head = p;
```

f = c + e

a = 1b = 10c = 20d = a + be = c + d

37. The program below uses six temporary variables a, b, c, d, e, f.

	$b = c + \epsilon$ $e = b + \epsilon$					
	e = 0 + d = 5 + d =					
	return d					
		-		their operands from interior the this program without	egisters, what is the mi ut spilling?	inimum
	1) 2		2) 3	3) 4	4) 6	
	38. The gra	ımmar S → aSa	bS c is			
	1) LL(1) but not LR(1)				
	2) LR(1) but not LR(1)			
	3) Both	n LL(1) and LR	(1)			
	4) Neit	her LL(1) nor L	.R(1)			
			•	number of 1s}, i.e. Leregular expressions by	is the set of all bit string	s with
		10 * 1) *		3 1		
	, ,	(10 * 10 *) *			-6	
	,	(10 * 1 *) * 0 *			13	
	· ·	1(10 * 1) * 10 *			8,	
	10 0		ala rojaji:			rojaj i
				\neq j}. L2 = {0.13 1 = j}. It tements is true ?	_3 = {0 ⁱ 1 ^j i = 2j + 1}. L4 =	= {0, 1,
	1) Only	y L2 is context	free			
	2) Only	y L2 and L3 are	context free			
	3) Only	y L1 and L2 are	context free			
	4) All a	are context free				
			•	•	t of all substrings cof. Wha	
			of states in a n	on-deterministic finite	automaton that accepts L	-
	1) n - 1	1				
	2) n					
	3) n +					
	4) 2 ⁿ -	1				
		-		ransactions T1, T2 and	d T3 :	
	T Dood ()		Т3			
	Read ()	Read (Y)				
		11044 (1)	Read (Y)			
		Write (Y)				
	Write (X	()	\\/r:+~ /\/\			
		Read (X)	Write (X)			
		Write (X)				
_		·		10/16		

Which one of the schedules below is the correct serialization of the above?

- 1) T1 → T3 → T2
- 2) T2 → T1 → T3
- 3) T2 \rightarrow T3 \rightarrow T1
- 4) T3 \rightarrow T1 \rightarrow T2
- 43. The following functional dependencies hold for relations R(A, B, C) and S(B, D, E)

$$B \rightarrow A$$

$$A \rightarrow C$$

The relation R contains 200 tuples and the relation S contains 100 tuples. What is the maximum number of tuples possible in the natural join R M S?

- 1) 100
- 2) 200
- 3) 300
- 4) 2000
- 44. The following program is to be tested for statement coverage:

if
$$(a = = b) \{S1; exit;\}$$

else if $(c = = d) \{S2;\}$
else $\{S3; exit;\}$
S4;

end

s.con The test cases T1, T2, T3 and T4 given below are expressed in terms of the properties satisfied by the values of variables a, b, c and d. The exact values are not given.

T1: a, b, c and d are all equal

T2: a, b, c and d are all distinct

T3: a=b and c!=d

T4: a !=b and c=d

Which of the test suites given below ensures coverage of statements S1, S2, S3 and S4?

- 1) T1, T2, T3
- 2) T2, T4
- 3) T3, T4
- 4) T1, T2, T4
- 45. The following program consists of 3 concurrent processes and 3 binary semaphores. The semaphores are initialized as S0 = 1, S1 = 0, S2 = 0.

Process P0	Process P1	Process P2
while (true) {		
wait (S0);	wait (S1);	wait (S2)
print '0'	Release (S0);	release (S0);
release		
(S1);		
release		
(S2);		
 }		

How many times will process P0 print '0'?

- 1) At least twice
- 2) Exactly twice
- 3) Exactly thrice

- 4) Exactly once
- 46. A system has n resources R_0 , ..., R_{n-1} , and k processes P_0 , P_{k-1} . The implementation of the resource request logic of each process P_i is as follows:

```
\begin{split} &\text{if (i\% 2 = = 0) \{} \\ &\text{if (i < n) request $R_{i}$ ;} \\ &\text{if (i + 2 < n) request $R_{i+2}$ ;} \\ &\text{else \{} \\ &\text{if (i < n) request $R_{n-i}$ ;} \\ &\text{if (i + 2 < n) request $R_{n-i-2}$ ;} \\ &\text{\}} \end{split}
```

In which one of the following situations is a deadlock possible?

```
1) n = 40, k = 26
```

- 2) n = 21, k = 12
- 3) n = 20, k = 10
- 4) n = 41, k = 19
- 47. Suppose computers A and B have IP addresses 10.105.1.113 and 10.105.1.91 respectively and they both use the same net mask N. Which of the values of N given below should not be used if A and B should belong to the same network?
 - 1) 255.255.255.0
 - 2) 255.255.255.128
 - 3) 255.255.255.192
 - 4) 255.255.254

Directions for question 48 to 49: Common Data Questions

A computer system has an L1 cache, an L2 cache, and a main memory unit connected as shown below. The block size in L1 cache is 4 words. The block size in L2 cache is 16 words. The memory access times are 2 nanoseconds. 20 nanoseconds and 200 nanoseconds for L1 cache, L2 cache and main memory unit respectively.

- 48. When there is a miss in L1 cache and a hit in L2 cache, a block is transferred from L2 cache to L1 cache. What is the time taken for this transfer?
 - 1) 2 nanoseconds
 - 2) 20 nanoseconds
 - 3) 22 nanoseconds
 - 4) 88 nanoseconds
- 49. When there is a miss in both L1 cache and L2 cache, first a block is transferred from main memory to L2 cache, and then a block is transferred from L2 cache to L1 cache. What is the total time taken for these transfers?

- 1) 222 nanoseconds
- 2) 888 nanoseconds
- 3) 902 nanoseconds
- 4) 968 nanoseconds

Directions for question 50 to 51: Common Data Questions

Consider a complete undirected graph with vertex set $\{0, 1, 2, 3, 4\}$. Entry W_{ij} in the matrix W below is the weight of the edge $\{i, j\}$.

$$W = \begin{pmatrix} 0 & 1 & 8 & 1 & 4 \\ 1 & 0 & 12 & 4 & 9 \\ 8 & 12 & 0 & 7 & 3 \\ 1 & 4 & 7 & 0 & 2 \\ 4 & 9 & 3 & 2 & 0 \end{pmatrix}$$

- 50. What is the minimum possible weight of a spanning tree T in this graph such that vertex 0 is a leaf node in the tree T?
 - 1) 7

2) 8

3) 9

- 4) 10
- 51. What is the minimum possible weight of a path P from vertex 1 to vertex 2 in this graph such that P contains at most 3 edges?
 - 1) 7

kaano

2) 8

3) 9

4) 10

Directions for question 52 to 53: Statement for Linked Answer Questions:

A hash table of length 10 uses open addressing with hash function $h(k) = k \mod 10$, and linear probing. After inserting 6 values into an empty hash table, the table is as shown below

0	
1	
2	42
3	23
4	34
5	52
6	46
7	33
8	
9	

- 52. Which one of the following choices gives a possible order in which the key values could have been inserted in the table ?
 - 1) 46, 42, 34, 52, 23, 33
 - 2) 34, 42, 23, 52, 33, 46
 - 3) 46, 34, 42, 23, 52, 33
 - 4) 42, 46, 33, 23, 34, 52

53.	How many different and linear probing w	•	_	alues using the same hash function bove?	n
	1) 10	2) 20	3) 30	4) 40	
	<u>-</u>			nked Answer Questions: d with links having weights as shown	n
	in the following diagr		- C		
		R1 3	R2) — 7 — (F	R4) 8 R6)	
54.	tables. Each router neighbour with the	starts with its weight of the	routing table initiates respective connect	ng algorithm to update their routing alized to contain an entry for each ting link. After all the routing tables used for carrying any data?	h
	1) 4	2) 3	3) 2	4) 1	
55.		rithm is used a		s question are changed to 2 and the graphs tables stabilize. How many links wi	
	1) 0	2) 1	3) 2	4) 3	
56	Choose the most a following sentence:	ippropriate wo	rd from the option	s given below to the complete the	Э
	His rather casual resubject.	emarks on po	litics	his lack of seriousness about the	Э
	 masked belied 				
	3) betrayed				
	4) suppressed				
57.	Which of the following	ng options is clo	osest in meaning to	the word Circuitous.	
	 cyclic indirect 				
	3) confusing				
	4) crooked				
58.	Choose the most ap	propriate word	I from the options g	iven below to complete the following	g
		our na	tural resources, we	would leave a better planet for ou	r

	children.			
	1) uphold			
	2) restrain			
	3) cherish			
	4) conserve			
59	25 persons are in a roo	om 15 of them play	hockey 17 of them	n play football and 10 of them
00.	-		· -	s playing neither hockey nor
	1) 2	2) 17	3) 13	4) 3
60.	The question below conselect the pair that best Unemployed: Worke	st expresses the rel		owed by four pairs of words. pair.
	1) fallow : land			
	2) unaware : sleeper			CU
	3) wit : jester			
	4) renovated : house			15.
61.	If 137 + 276 = 435 how	v much is 731 + 672	2?	
	1) 534	2) 1403	3) 1623	4) 1513
62.	born on 1st january. T one after another) is le 1. Hari's age + Gita's a	he age difference best than 3 years. Ginge > Irfan's age + 5 petween Gita and Sest.	petween any two suc ven the following fac Saira's age. Saira is 1 year. Howe	rothers and sisters). All were accessive siblings (that is born acts:
	1) HSIG	2) SGHI	3) IGSH	4) IHSG
		_,	5 , 15.511	.,
63.		rkers can build a v	vall in 30 days. If a	vorkers can build a wall in 25 team has 2 skilled, 6 semi- e wall ?
	1) 20 days			
	2) 18 days			
	3) 16 days			

64. Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare; and regretfully, there exist people in military establishments who think that chemical agents are useful tools for their cause.

4) 15 days

Which of the following statements best sums up the meaning of the above passage:

- 1) Modern warfare has resulted in civil strife.
- 2) Chemical agents are useful in modern warfare.
- 3) Use of chemical agents in warfare would be undesirable.
- 4) People in military establishments like to use chemical agents in war.
- 65. Given digits 2, 2, 3, 3, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed?

FaaDoo Engineers.com

- 1) 50
- 2) 51
- 3) 52
- 4) 54

Answer Key

1) 3 11) 2 21) 1 31) 1	2) 4 12) 3 22) 2 32) 1	3) 3 13) 2 23) 1 33) 1	4) 1 14) 3 24) 1 34) 4	5) 2 15) 4 25) 4 35) 3	6) 1 16) 4 26) 1 36) 4	7) 2 17) 2 27) 1 37) 3	8) 1 18) 3 28) 4 38) 3	9) 2 19) 3 29) 4 39) 2	10) 1 20) 2 30) 4 40) 1	
41) 3	42) 1	43) 1	44) 4	45) 1	46) 2	47) 4	48) 3	49) 2	50) 4	
51) 2	52) 3	53) 3	54) 2	55) 3	56) 1	57) 2	58) 4	59) 4	60) 1	
61) 3	62) 2	63) 3	64) 4	65) 2						
61) 3						66		C		
,										
C23										