riordry ;	D.E. (Etroy) Sem-VIII (Rev.	516107.
P4/RT-Ex-07-21	Elective II: VLSI Design.	
Con. 2931-07.	[REVISED COURSE]	ND-1801
	(3 Hours)	[Total Marks : 100
N.B: 1 2 3) Question No.1 is compulsory) Attempt any four out of remaining six questions) Assume suitable data wherever necessary 	
1.(a (b	 Explain the switching characteristics of CMOS gate. Suggest the to improve the switching performance. Design one bit full adder using AND, OR, EXOR gates. Write the description of the circuit. Write the stimulus for the full adder 	e methods [10] ne verilog [10]
2.(a)	Discuss in detail 4 x 4 array multiplier. Can this be used as a build block to create an 8 x 8 multiplier ? If so detail the problems an modifications that need to be made.	ding id [10]
(b)	Explain EEPROM using floating gate NMOSFETS.	[10]
3.(a)	Construct a circuit diagram for a CMOS logic gate that implement function $F = A [B + C (D+E)]$ Design the W/L ratio for the trans	nts the AOI istors [10]
(b)	Design CMOS implementation of JK flip flop .Explain what are the limitations of your design.	he [10]
4.(a)	Summarize the approach you would take to reduce the power dissi a CMOS chip that is designed for palm top computer.	pation of [10]
(b)	What would be the conductor width of power and ground wires to clock buffer that drives 100pF of on-chip load to satisfy the metal is consideration ($J_{AL} = 0.5 \text{ mA/}\mu$)? What is the ground bounce with the Conductor size. The module is 500µm from both the power and the Pads and the supply voltage is 5 volts. The rise/fall time of the clock is 1 page (Asympton P = 050/m)	a 50 MHz migration he chosen e ground ck
	is 1 nsec.(Assume $K_s = .05\Omega/sq)$, [10]
5.(a) (b)	Discuss floor planning and routing in VLSI. What is cross talk in integrated circuits? Discuss various methods t it.	[10] o reduce [10]
6.(a) (b)	Explain three main approaches to Design for Testability in detail Explain in detail Pipelined system design	[10] [10]
7	 Write short notes on any three :- a. Behavioral and RTL modeling b. Resistance and Capacitance Estimation c. Clock generation and Distribution d. Carry Look ahead adders 	[20]