First / Second Semester B.E. Degree Examination, Dec.08/Jan.09 Engineering Physics

Time: 3 hrs.

Max. Marks:100

(04 Marks)

Note: Answer any FIVE full questions. Constants: $h = 6.63x10^{-34}JS \ e = 1.6x10^{-19}C$, $k = 1.38x10^{-23}J/Q$ $c = 3x10^8 m/s$, $m_e = 9.1x10^{-31}kg$, $N_A = 6.025x10^{-26}/K$ mol $\epsilon_o = 8.85x10^{-12}F/m$.

	3	$c = 3x10^8 \text{ m/s}, m_e = 9.1x10^{31} \text{kg}, N_A = 6.025x10^{26} / \text{K mol}$
		$\epsilon_{a} = 8.85 \times 10^{-12} F/m$.
1	a.	Explain Davisson and Germer experiment to establish the wave nature of electrons.
		(10 Marks)
	b.	Derive an expression for the de Broglie wavelength using the concept of group velocity. (06 Marks)
	c.	The position and momentum of a 2kev electron are simultaneously determined and if its
		position is located within 0.12nm, what is the percentage of uncertainty in its momentum. (04 Marks)
2	a.	Assuming the time-independent Schrodinger wave equation, obtain eigen functions and
8550	00000	eigen values for a particle in one dimensional potential well of infinite height and discuss
		the solutions for $n = 1$. (10 Marks)
3	Ъ.	What is Meissner effect and give its Experimental proof. (04 Marks)
		Explain Type I and Type II super conductors. (06 Marks)
3	a.	Define drift velocity, mean free path and relaxation time. Derive an expression for
· ·		electrical conductivity in metals using free electron model. (10 Marks)
	b.	Discuss the merits of quantum free electron theory. (05 Marks)
	C.	Find the temperature at which there is 1% probability that a state with energy 0.5ev above
		Fermi energy is occupied. (05 Marks)
4	a.	Mention the different types of polarization mechanisms. Derive an expression for internal
		field in case of solids for one dimensional array of atoms. (10 Marks)
	b.	Explain the properties and applications of hard and soft magnetic materials. (06 Marks)
	c.	If a Nacl crystal is subjected to an electric field of 1000v/m and the resulting polarization is
		4.3x10 ⁻⁸ c/m ² , calculate the dielectric constant of Nacl. (04 Marks)
5	a.	Distinguish between stimulated emission and Spontaneous emission. Define population
		invention, Active medium and Resonator. (07 Marks)
	b.	Explain the construction and working of a Ruby laser with energy level diagram. (08 Marks)
	C.	The ratio of population of two energy levels out of which one corresponds to a Meta stable
		state is 1.059x10 ⁻³⁰ . Find the wavelength of light emitted at 330°k. (05 Marks)
6	a	Define numerical aperture and derive an expression for numerical aperture interms of
27. 85 0.		refractive indices of case and lading. (05 Marks)
	b.	A fiber with an input power of 9.0kw has a loss of 1.5dB/km. If the fiber is 3000m long
		what is the out put power? (05 Marks)
v	C.	Derive Bragg's law and describe how Bragg's x-ray spectrometer can be used to determine
		the wavelength of x-rays. (10 Marks)
7	a.	Explain seven crystal systems. (07 Marks)
	ь.	Derive an expression for inter planar spacing in a cubic system. Explain with a neat sketch
		the diamond crystal structure. (10 Marks)
	C.	
8	a.	Discuss the different types of nano-scale systems. (08 Marks)
	b.	What are composite materials? Give their classification, properties and applications.
		(08 Marks)

c. Explain briefly about the working of MEMS.