WARNING		Any malpractice or any attempt to commit any kind of malpractice in the Examination will DISQUALIFY THE CANDIDATE.				
	PAPE	R-I CHEMISTRY &	PHYSICS			
Version Code	А3	Question Booklet Serial Number :				
Time : 150 Minutes		Number of Questions : 120	Maximum Marks : 480			
Name of Ca	ındidate					
Roll Numbe	er					
Signature of Candidate	of					

INSTRUCTIONS TO THE CANDIDATE

- 1. Please ensure that the VERSION CODE shown at the top of this Question Booklet is the same as that shown in the OMR Answer Sheet issued to you. If you have received a Question Booklet with a different Version Code, please get it replaced with a Ouestion Booklet with the same Version Code as that of the OMR Answer Sheet from the Invigilator. THIS IS VERY IMPORTANT.
- 2. Please fill in the items such as Name, Roll Number and Signature in the columns given above. Please also write Ouestion Booklet Sl. No. given at the top of this page against item 4 in the OMR Answer Sheet.
- 3. This Question Booklet contains 120 questions. For each question, five answers are suggested and given against (A), (B), (C), (D) and (E) of which only one will be the Most Appropriate Answer. Mark the bubble containing the letter corresponding to the 'Most Appropriate Answer' in the OMR Answer Sheet, by using either Blue or Black ball - point pen only.
- 4. Negative Marking: In order to discourage wild guessing, the score will be subjected to penalization formula based on the number of right answers actually marked and the number of wrong answers marked. Each correct answer will be awarded FOUR marks. ONE mark will be deducted for each incorrect answer. More than one answer marked against a question will be deemed as incorrect answer and will be negatively marked.
- 5. Please read the instructions given in the OMR Answer Sheet for marking answers. Candidates are advised to strictly follow the instructions contained in the OMR Answer Sheet

IMMEDIATELY AFTER OPENING THIS QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET ISSUED CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER, IF NOT, REQUEST FOR REPLACEMENT.

DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.

BLANK PAGE

Mathrubhumi Education

Chem-Phy-I-11-A3

2

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120. PRINTED PAGES: 32

1.	X(NO ₃) ₃ (aq) and the second	l cell contains Y(NO3)2 (a	n series. The first cell contains q). The relative atomic masses of		
	X and Y are in the ratio 1:2.				
	(A) 3:2	(B) 1 : 2	(C) 1:3		
	(D) 3 : I	(E) 2 : I			
2.			initial concentration by a factor of oncentration by a factor of 1/16 is		
	(A) 20 min	(B) 10 min	(C) 80 min		
	(D) 40 min	(E) 5 min			
3.	Which one of the following	is correctly matched?			
	(A) emulsion – smoke	(B) gel butter	(C) aerosol – hair cream		
	(D) sol – whipped cream	(F) foam - mist			
4.	Which one of the following	has the highest molar con-	ductivity?		
	(A) Diamminedichloroplating	num(II)			
	(B) Tetraamminedichloroco	balt(III) chloride			
	(C) Potassium hexacyanoferrate(II)				
	(D) Hexaaquochromium(III) chloride			
	(E) Potassium hexacyanofer	rate(III)			
5.	The ligand N(CH ₂ CH ₂ NH ₂)	3 is			
	(A) tridentate	(B) pentadentate	(C) tetradentate		
	(D) bidentate	(E) hexadentate			
	-	Space for rough work			

- 6. The enthalpy of solution of sodium chloride is 4 kJ mol⁻¹ and its enthalpy of hydration of ions is 784 kJ mol⁻¹. Then the lattice enthalpy of NaCl (in kJ mol⁻¹) is
 (A) + 788 (B) + 4 (C) + 398
 (D) + 780 (E) + 394
- 7. In the reaction $AB(g) \leftrightharpoons A(g) + B(g)$ at 30°C, Kp for the dissociation equilibrium is 2.56×10^{-2} atm. If the total pressure at equilibrium is 1 atm, then the percentage dissociation of AB is
 - (A) 87 % (B) 13 % (C) 43.5 % (D) 6 % (E) 16 %
- At 25°C, the solubility product of Hg₂Cl₂ in water is 3.2 × 10⁻¹⁷mol³dm⁻⁹. What is the solubility of Hg₂Cl₂ in water at 25°C?
 (A) 1.2 × 10⁻¹² M
 (B) 3.0 × 10⁻⁶ M
 (C) 2 × 10⁻⁶ M

Industrial Product

(E) 5.2×10^{-6} M

(D) 1.2 × 10⁻¹⁶ M

9. Match the following correctly

(D) a-iv, b-ii, c-i, d-iii

Catalyst

(a) V₂O₅ (i) High Density Polyethylene
(b) Ziegler-Natta (ii) Polyacrylonitrile
(c) Peroxide (iii) NH₃
(d) Finely divided Fe (iv) H₂SO₄

(A) a-iv, b-i, c-ii, d-iii (B) a-iv, b-iii, c-ii, d-i (C) a-iii, b-i, c-ii, d-iv

(E) a-iv, b-i, c-iii, d- ii

	(D) - 1440	(E) – 520	, ,
13.	In hexa-1,3-diene-5-yne	e the number of C-C σ , C-C	π and C-H $σ$ bonds respectively
	(A) 5, 4 and 6	(B) 6, 3 and 5	(C) 5, 3 and 6
	(D) 6, 4 and 5	(E) 5, 5 and 5	
14.	The number of primary respectively	, secondary, tertiary and quate	ernary carbons in neopentane are
	(A) 4, 3, 2 and 1	(B) 5, 0, 0 and 1	(C) 4, 0, 0 and 1
	(D) 4, 0, 1 and 1	(E) 4, 1, 0 and 0	
Che	em-Phy-I-11-A3	5	
http	://www.mb4educatio	n.com Education Onli	ne Desk, Mathrubhumi, Kochi

10. A monobasic weak acid solution has a molarity of 0.005 and pH of 5. What is its

12. Four grams of graphite is burnt in a bomb calorimeter of heat capacity 30 kJ K⁻¹ in excess of oxygen at 1 atmospheric pressure. The temperature rises from 300 to 304 K.

(C) 0.5

(C) - 360

(B) 0.2

(E) 20.0

What is the enthalpy of combustion of graphite (in kJ mol⁻¹)? (B) 1440

11. Choose the incorrect statement in respect of physisorption

(B) It arises because of van der Waals' forces.

(D) No appreciable activation energy is needed. (E) Enthalpy of adsorption is in the range 80 240 kJ mol

percentage ionization in this solution?

(A) It is not specific in nature.

(C) It is reversible in nature.

(A) 2.0

(D) 0.25

(A) 360

15.	Which one of the following i (A) aniline (D) tropolone	s a non-benzenoid aromatic cor (B) benzoic acid (E) anthracene	npound? (C) naphthalene
16.	A hydrocarbon contains 80% (A) CH ₂ (D) CH	carbon. What is the empirical (B) CH ₃ (E) C ₂ H ₃	formula of the compound? ·(C) CH ₄
17.	When one mole of an alkendis (A) 3-methyl-1-butene (B) 2,3-dimethyl-1-butene (C) 2, 3-dimethyl-2-pentene (D) Isobutene (E) 2, 3-dimethyl-2-butene	e on ozonolysis produces 2 mol	les of propanone, the alkene
18.	Which one of the following by (A) 2-methylbutane (D) <i>n</i> -pentane	nas the lowest boiling point? (B) 2-methylpropane (E) n-butane	(C) 2, 2-dimethylpropane
19.	Which one of the following of (A) 1, 2-dibromopropene (B) 2, 3-dimethylbut-2-ene (C) 2, 3-dibromobut-2-ene (D) 2-methylbut-2-ene (E) 2, 3-dibromobut-1-ene	exhibits geometrical isomerism!	,

20. Reaction of hydrogen bromide with propene in the absence of peroxide is a/an (A) free radical addition (B) nucleophilic addition (C) electrophilic substitution (D) electrophilic addition (E) nucleophilic substitution Which of the following compounds can yield only one monochlorinated product upon free radical chlorination? (A) propane (B) 2,2-dimethylpropane (C) 2-methylpropane (E) 2-methylbutane (D) n-butane 22. Chlorobenzene on treatment with sodium in dry ether gives diphenyl. The name of the reaction is (A) Fittig reaction (B) Wurtz-Fittig reaction (C) Sandmeyer reaction (D) Gatterman reaction (E) Wurtz reaction

Space for rough work

(B) CH₃CH=CHCH₃

(E) CH₁CHO

23. Among the following, the optically active compound is

(A) CH₃CH₂OH

(D) CH₃CH₂COCH₃

(C) CH₃CHDOH

24.	(A) are tautomers (B) are position isomers	CHCH ₃ and CH ₃ CH ₂ CH=CH ₃ of sp ³ -sp ³ , sp ¹ -sp ² and sp ² -sp ² nic equilibrium	
25.	In alkaline hydrolysis of a alkali is doubled, then the the (A) will be doubled (B) will be halved (C) will become four times (D) will be tripled (E) will remain constant	eaction rate at constant tempo	eous alkali, if concentration of
26.	isomeric alkenes X and Y	with molecular formula C ₆ Is CH ₃ COCH ₃ , CH ₃ CHO, CF butane ane butane	dehydrohalogenation gave two things. On reductive ozonolysis, X 13CH ₂ CHO and (CH ₃) ₂ CHCHO.
27.	The compound that does not (A) CH ₂ =CHCH ₂ Cl (D) C ₆ H ₅ CH(CH ₃)Cl	ot undergo hydrolysis by $S_N I$ (B) C_6H_5CI (E) $C_6H_5CH(C_6H_5)CI$	mechanism is (C) $C_0H_5CH_2Cl$
28.	Which one of the following		(C) triiodomethane

(D) tetrachloromethane

(E) Freon-12

29.	. The compound that neither forms semicarbazone nor oxime is			
	(A) HCHO	(B) CH ₃ COCH ₂ Cl	(C) CH ₃ CHO	
	(D) CH ₃ CONHCH ₃	(E) (CH ₃) ₂ CHCHO	, ,	
30.	The compound that undergood	es dehydration very easily is		
	(A) 2-methyl-propan-2-ol	(B) ethyl alcohol	(C) 3-methyl-2-butanol	
	(D) propyl alcohol	(E) methanol		
31.	Which of the following alcowith a trace of sulphuric acid	phols gives the best yield of di	alkyl ether on being heated	
	(A) 2-pentanol	(B) cyclopentanol	(C) 2-methyl-2-butanol	
	(D) 2-propanol	(E) 1-pentanol		
32.	Which of the following pairs	s can be distinguished by sodium	n hypoiodite?	
	(A) CH ₃ CHO and CH ₃ COC	н,		
	(B) CH3CH2CHO and CH3C	OCH ₃		
	(C) CH ₃ CH ₂ OH and CH ₃ CH	I ₂ CHOHCH ₃		
	(D) CH3OH and CH3CH2CH	IO		
	(E) CH ₃ OH and CH ₃ CH ₂ CH	₂ OH		
33.	Anilinium hydrogensulphate	on heating with sulphuric acid	at 453-473 K produces	
	(A) benzene sulphonic acid			
	(B) anthranilic acid			
	(C) aniline			
	(D) m-aninobenzene sulpho	nic acid		
	(E) sulphanilic acid	ino dord		
	(L) surpriamme actu			

34.	The strongest base in aqueo (A) N, N-Diethylethanamine (D) Ethanamine	us solution among the following e (B) N-Ethylethanamine ((E) Phenylmethanamine	g amines is C) N-Methylmethanamine	
35.	treated with NaNO2 and HO	mine water to give an organic Cl at 0°C gives a water soluble 2 and HCl gives compound 'Z'.	compound 'Y'. Compound	
36,	The linkage between the two monosaccharide units in lactose is (A) C1 of β-D-glucose and C4 of β-D-galactose (B) C1 of β-D-galactose and C4 of β-D-glucose (C) C1 of α-D-galactose and C4 of β-D-glucose (D) C1 of β-D-galactose and C4 of α-D-glucose (E) C1 of α-D-glucose and C4 of α-D-glucose			
37.	Glucose does not react with (A) Br ₂ /H ₂ O (D) NaHSO ₃	(B) H ₂ N-OH (E) CH ₃ -CO-O-CO-CH ₃	(C) HI	
38.	The vitamin that is not solub (A) Vitamin B ₁ (D) Vitamin C	le in water is (B) Vitamin B ₂ (E) Vitamin D	(C) Vitamin B ₆	
39.	Excess nitrate in drinking wa (A) methemoglobinemia (D) laxative effect	ter can cause (B) kidney damage (E) leucoderma	(C) liver damage	
40.	Terfenadine is commonly use (A) Tranquilizer (D) Antibiotic	ed as a/an (B) Antihistamine (E) Antifertility drug	(C) Antimicrobial	

41.	For Balmer series in the spectrum of atomic hydrogen, the wave number of each line is
	given by $\overline{v} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$ where R_H is a constant and n_1 and n_2 are integers. Which of
	the following statement(s) is (are) correct?
	1. As wavelength decreases, the lines in the series converge
	2. The integer n_1 is equal to 2
	 The ionisation energy of hydrogen can be calculated from the wave number of these lines

- 4. The line of longest wavelength corresponds to $n_2 = 3$
- (A) 1, 2 and 3
- (B) 2, 3 and 4 (E) 2 only

- (D) 2 and 4 only
- 42. Which one of the following sets of compounds correctly illustrate the law of reciprocal proportions?
 - (A) P₂O₃, PH₃, H₂O
- (B) P₂O₅, PH₃, H₂O
- (C) N2O5, NH3, H2O

- (D) N2O, NH3, H2O
- (E) NO2, NH3, H2O
- 43. In which one of the following pairs the two species are both isoelectronic and isotopic? (Atomic numbers: Ca=20, Ar=18, K=19, Mg=12, Fe=26, Na=11)
 - (A) 40 Ca2+ and 40 Ar (D) 23Na and 24Na
- (B) 39K+ and 40K+ (E) 56Fe3+ and 57Fe2+
- (C) $^{24}Mg^{2+}$ and ^{25}Mg
- 44. 20.0 kg of N₂(g) and 3.0 kg of H₂(g) are mixed to produce NH₃(g). The amount of
 - NH₃(g) formed is (A) 17 kg
- (B) 34 kg

(C) 20 kg

(D) 3 kg

(E) 23 kg

45.	following bonds:					
	(A) C-O	(B) C-C	(C) C≡N			
	(D) O-H	(E) C≡C				
46.	Among the following molec shapes does not describe any	ules: SO ₂ , SF ₄ , CIF ₃ , BrF ₅ and 3 of the molecules mentioned?	XeF ₄ , which of the following			
	(A) Bent	(B) Trigonal bipyramidal	(C) Sce-saw			
	(D) T-shape	(E) Square pyramidal				
47.	volume when it reaches the	t the bottom of a lake increase surface. Assuming that atmosp column of water 10 m height, the	pheric pressure is equivalent			
	(A) 80 m	(B) 90 m	(C) 40 m			
	(D) 10 m	(E) 70 m	211			
48.	Three different gases X,Y and Z of molecular masses 2, 16 and 64 were enclosed in a vessel at constant temperature till equilibrium is reached. Which of the following statement is correct?					
	(A) Gas Z will be at the top of the vessel					
	(B) Gas Y will be at the top of the vessel					
	(C) Gas Z will be at the bottom and X will be at the top					
	(D) Gas X will be at the bottom and Z will be at the top					
	(E) Gases will form homogo	eneous mixture				
49.	Which of the following is a	correct statement?				
	(A) Surface tension of a liqu	id decreases with increase in te	mperature			
	(B) Vapour pressure of a liq	uid decreases with increase in t	emperature			
	(C) Viscosity of a liquid dec	creases with decrease in tempera	ature			
	(D) The boiling point of a liquid is independent of the altitude of the place					

(E) In gravity free environments, droplets of a liquid on flat surface are slightly

flattened

- 50. The bond enthalpy is the highest for
 - (A) F₂ (B) Cl₂
 - (E) H₂

(C) Br₂

- (D) I₂
- 51. The correct order of decreasing electronegativity values among the elements I - beryllium, II - oxygen, III - nitrogen and IV - magnesium, is
 - (A)(II) > (III) > (I) > (IV)
 - (B) (III) > (IV) > (II) > (I)
 - (C)(I) > (II) > (III) > (IV)
 - (D)(I) > (II) > (IV) > (III)
 - (E)(II) > (III) > (IV) > (I)
- 52. Permanent hardness of water is due to the presence of
 - (A) bicarbonates of sodium and potassium
 - (B) chlorides and sulphates of sodium and potassium
 - (C) chlorides and sulphates of calcium and magnesium
 - (D) bicarbonates of calcium and magnesium
 - (E) phosphates of sodium and potassium
- 53. Which one of the following does not occur as sulphide ore?
 - (B) Cr (A) Zn

 - (C) Ag (E) Hg
- 54. The increasing order of the density of alkali metals is
 - (A) Li < K < Na < Rb < Cs
 - (B) $Li \le Na \le K \le Rb \le Cs$
 - (C) Cs < Rb < Na < K < Li
 - (D) Cs < Rb < K < Na < Li
 - (E) Li < Na < Rb < K < Cs

Space for rough work

13

(D) Fe

- 55. The alkali halide that is soluble in pyridine is
 - (A) NaCl

(B) LiCl

(C) KCI

(D) CsI

- (E) NaBr
- 56. When Br₂ is treated with aqueous solutions of NaF, NaCl and NaI separately
 - (A) F2, Cl2 and I2 are liberated
 - (B) only F2 and Cl2 are liberated
 - (C) only I2 is liberated
 - (D) only Cl2 is liberated
 - (E) only Cl2 and I2 are liberated
- 57. The basicity of pyrophosphorous acid is
 - (A) 2 (D) 5

(B) 4 (E) 3

- (C) 1
- 58. The oxidation state of phosphorus in cyclotrimetaphosphoric acid is
 - (A) + 3(D) + 2

(B) + 5(E) - 2

- (C) 3
- 59. Which of the following species is/arc paramagnetic?
 - Fe2+, Zn0, Hg2+, Ti4+
 - (A) Fe²⁺ only
- (B) Zn⁰ and Ti⁴⁺
- (C) Fe2+ and Hg2+

- (D) Zn⁰ and Hg²⁺
- (E) Fe2+ and Ti4+

- 60. The titanium (atomic number 22) compound that does not exist is
 - OiT (A)

(B) TiO₂

(C) K2TiF6

(D) TiCh

- (E) K₂TiO₄
- 61. The acidic, basic or amphoteric nature of Mn₂O₇, V₂O₅ and CrO are respectively
 - (A) acidic, acidic and basic
 - (B) basic, amphoteric and acidic
 - (C) acidic, amphoteric and basic
 - (D) acidic, basic and amphoteric
 - (E) acidic, basic and basic
- 62. The hydrogen bond is shortest in
 - (A) S-H---S (D) F-H---O
- (B) N-H---O (E) F-H---F
- 63. A reaction is spontaneous at low temperature but non-spontaneous at high temperature. Which of the following is true for the reaction?
 - $(A) \Delta H > 0, \Delta S > 0$
- (B) $\Delta H < 0$, $\Delta S > 0$
- (C) $\Delta H > 0$, $\Delta S = 0$

- (D) $\Delta H < 0$, $\Delta S < 0$
- (E) $\Delta H = 0$, $\Delta S < 0$

Space for rough work

15

- 64. For the reaction $C(s) + CO_2(g) \rightarrow 2CO(g)$, $K_p=63$ atm at 1000 K. If at equilibrium $P_{CO} = 10 P_{CO_2}$, then the total pressure of the gases at equilibrium is (C) 0.63 atm (B) 6.93 atm (A) 6.3 atm (E) 69.3 atm (D) 0.693 atm 65. The system that forms maximum boiling azeotrope is (A) carbondisulphide - acetone (B) benzene - toluene
 - (C) acetone _ chloroform
 - (D) n-hexane n-heptane
 - (E) ethanol acetone
- 66. Which one of the following statements is false?
 - (A) Rapult's law states that the vapour pressure of a component over a binary solution of volatile liquids is directly proportional to its mole fraction
 - (B) Two sucrose solutions of the same molality prepared in different solvents will have the same depression of freezing point
 - (C) The correct order of osmotic pressures of 0.01M solution of each compound is BaCl₂ > KCl > CH₃COOH > Glucose
 - (D) In the equation osmotic pressure $\Pi = MRT$, M is the molarity of the solution
 - (E) The molecular weight of NaCl determined by colligative property measurement is less than its theoretical molecular weight
- 67. Which pair of electrolytes could not be distinguished by the products of electrolysis using inert electrodes?
 - (A) 1M CuSO₄ solution, 1M CuCl₂ solution
 - (B) 1M KCl solution, 1M Kl solution
 - (C) 1M AgNO3 solution, 1M Cu(NO3)2, solution
 - (D) 1M KCl solution, 1M NaCl solution
 - (E) 1M CuBr₂ solution, 1M CuSO₄ solution

68. The initial rates of reaction 3A + 2B + C → products, at different initial concentrations are given below.

Initial Rate, Ms-1	[A] ₀ , M	[B] ₀ , M	[C] ₀ , M
5.0×10 ⁻³	0.010	0.005	0.010
5.0×10 ³	0.010	0.005	0.015
1.0×10 ²	0.010	0.010	0.010
1.25×10 ⁻³	0.005	0.005	0.010

The order with respect to the reactants A, B and C are respectively

(A) 3, 2, 0

(B) 3, 2, 1

(C) 2, 2, 0

- (D) 2, 2, 1
- (E) 2, 1, 0
- 69. The rate law for the reaction $xA + yB \rightarrow mP + nQ$ is Rate = $k[A]^{c}[B]^{d}$. What is the total order of the reaction?
 - (A)(x+y)
- (B) (m + n)

(C)(c+d)

(D) x/y

- (E) Two
- 70. Ammonia will not form complex with
 - (A) Ag²⁺ (D) Cd²⁺

(B) Pb²⁺
(E) Fe²⁺

- (C) Cu²
- 71. At the sublimation temperature, for the process $CO_2(s) \leftrightharpoons CO_2(g)$
 - (A) ΔH , ΔS and ΔG are all positive
 - (B) $\Delta H > 0$, $\Delta S > 0$ and $\Delta G < 0$
 - (B) ΔH > 0, ΔS > 0 and ΔG < 0(C) ΔH < 0, ΔS > 0 and ΔG < 0
 - (D) $\Delta H > 0$, $\Delta S > 0$ and $\Delta G > 0$
 - (E) $\Delta H > 0$, $\Delta S > 0$ and $\Delta G = 0$
- 72. Which one of the following gases has the lowest value of Henry's law constant?
 - (A) N₂

(B) He

(C) H₂

(D) CO₂

 $(E) O_2$

- 73. The total electric flux emanating from a closed surface enclosing an α-particle (e-electronic charge) is (B) $\frac{e}{\epsilon}$ (C) $e \in (D) \frac{\epsilon_0}{4}$ (E) $\frac{4\epsilon}{\epsilon}$
- 74. The work done in carrying a charge q once round a circle of radius 'a' with a charge O at its centre is
- 75. A parallel plate capacitor is connected to a 5 V battery and charged. The battery is then disconnected and a glass slab is introduced between the plates. Then the quantities that decrease are
 - (A) charge and potential difference
 - (B) charge and capacitance
 - (C) capacitance and potential difference
 - (D) energy stored and capacitance
 - (E) energy stored and potential difference
- 76. Two identical conductors maintained at different temperatures are given potential differences in the ratio 1:2. Then the ratio of their drift velocities is

(A) 1:2

(B) 3:2

(C) 1:1

(D) 1·21/2

(E) 1:4

- 77. On increasing the temperature of a conductor, its resistance increases because the
 - (A) relaxation time increases (B) mass of electron increases
 - (C) electron density decreases (D) relaxation time decreases

 - (E) relaxation time remains constant
- 78. Two batteries of emfs 2 V and 1 V of internal resistances 1 Ω and 2 Ω respectively are connected in parallel. The effective emf of the combination is
- (C) $\frac{3}{5}$ V
- (E) 5 V

- 79. Choose the CORRECT statement
 - (A) Current sensitivity of a moving coil galvanometer is inversely proportional to the magnetic induction
 - (B) To convert a galvanometer into an ammeter, a high resistance is connected in series
 - ((') To convert a galvanometer into a voltmeter, a low resistance is connected in parallel
 - (D) Voltage sensitivity of a moving coil galvanometer is directly proportional to the magnetic induction
 - (E) The zero of an ohm meter scale is at the left most end of the scale

- 80. Two particles A and B having equal charges +6 C, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describe circular paths of radii 2 cm and 3 cm respectively. The ratio of mass of A to that of B is

- 81. Ampere's circuital law can be derived from
 - (A) Ohm's law
 - (B) Biot-Savart law
 - (C) Kirchhoff's law
 - (D) Gauss' law
 - (E) Coulomb's law
- 82. One conducting U-tube can slide into another U-tube, maintaining electrical contacts between them. A magnetic field B is acting perpendicular to the plane of slide. If each tube moves at a constant speed v towards each other, then the emf induced in the circuit
 - (A) $\frac{3}{2}$ Blv
- (B)0
- (C) Blv
- (D) Blv
- (E) 2Blv

(A) $\sin^{-1}\left(\frac{2}{3}\right)$	(B) $\tan^{-1}\left(\frac{3}{4}\right)$	(C) $\tan^{-1}\left(\frac{2}{3}\right)$	(D) $\sin^{-1}\left(\frac{3}{4}\right)$	(E) $\sin^{-1}\left(\frac{1}{4}\right)$
	Spa	ace for rough work		

21

http://www.mb4education.com | Education Online Desk, Mathrubhumi, Kochi

83. Two solenoids of equal number of turns have their lengths and the radii in the same

(C) 1:1

(A) The direction of eddy current is given by Fleming's right hand rule (B) A choke coil is a pure inductor used for controlling current in an a.c. circuit (C) The energy stored in a conductor of capacitance C having a charge q is $\frac{1}{2}$ Cq² (D) The magnetic energy stored in a coil of self-inductance L carrying current I

(E) Induction coil is a powerful equipment used for generating high voltages

(E) radiowaves 86. Light travels in two media A and B with speeds $1.8 \times 10^8 \text{ ms}^{-1}$ and $2.4 \times 10^8 \text{ ms}^{-1}$

(B) γ-ravs

(D) 1:4

(E) 1:3

(C) infrared rays

ratio 1:2. The ratio of their self inductances will be

85. The electromagnetic wave having the shortest wavelength is

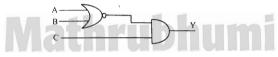
respectively. Then the critical angle between them is

(B) 2:1

84. Pick out the FALSE statement from the following:

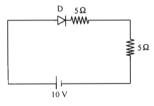
(A) 1:2

is $\frac{1}{2}LI^2$


(A) X-ravs

Chem-Phy-I-11-A3

(D) microwaves


87.	A ray of light is incident at 60° on one face of a prism of angle 30° and the emergent ray makes 30° with the incident ray. The refractive index of the prism is					
	(A) 1.732	(B) 1.414	(C) 1.5	(D) 1.33	(E) 1.6	
88.	In Young's double slit experiment, if d , D and λ represent, the distance between the slits, the distance of the screen from the slits and wavelength of light used respectively, then the band width is inversely proportional to					
	(A) λ	(B) d	(C) D	(D) λ^2	(E) D ²	
89.	. If a proton and electron have the same de-Broglic wavelength, then (A) kinetic energy of electron < kinetic energy of proton (B) kinetic energy of electron = kinetic energy of proton (C) momentum of electron > momentum of proton (D) momentum of electron = momentum of proton (E) momentum of electron < momentum of proton					
90.		leus ₉₂ U ²³⁸ emits a		β-particle in succes	ssion. The atomic	
	(A) 90, 233	(B) 90, 238	(C) 91, 238	(D) 93, 238	(E) 91, 234	
91.	. Heavy water is used in nuclear reactors					
	(A) to absorb n	eutrons to sustain	controlled reaction	n		
	(B) to absorb no	eutrons to stop the	chain reaction			
	(C) to reduce ha	azardous radiation	from nuclear read	ction		
	(D) to slow dow	vn the neutrons to	thermal energies			
	(E) to speed up the nuclear reaction as catalyst					

- A semiconductor with a band gap of 2.5 eV is used to fabricate a p-n photodiode. It can detect a signal of wavelength
 - (A) 4000 nm (B) 6000 Å
- (C) 6000 nm
- (D) 4000 Å (E) 5500 Å
- 93. In the circuit given, A, B and C are inputs and Y is the output

The output of Y is

- (A) high for all the high inputs
- (B) high for all the low inputs
- (C) high when A = 1, B = 1, C = 0
- (D) low when A = 0, B = 0, C = 1
- (E) low 'for all low inputs
- 94. In the given circuit for ideal diode, the current through the battery is

- (A) 0.5 A
- (B) 1.5 A
- (C) 1.0 A
- (D) 2 A
- (E) 2.5 A

95. If the TV telecast is to cover a radius of 120 km (given the radius of the earth = 6400 km). the height of the transmitting antenna is

(A) 1280 m

- (B) 1125 m
- (C) 1560 m
- (D) 79 m
- (E) 1050 m

- 96. Identify the INCORRECT statement from the following
 - (A) AM detection is carried out using a rectifier and an envelop detector.
 - (B) Pulse position denotes the time of rise or fall of the pulse amplitude.
 - (C) Modulation index µ is kept ≥ 1, to avoid distortion.
 - (D) Facsimile (FAX) scans the contents of the document to create electronic signals.
 - (E) Detection is the process of recovering the modulating signal from the modulated carrier wave.
- 97. The mobile telephones operate typically in the range of
 - (A) 1 100 MHz
 - (B) 100 200 MHz
 - (C) 1000 2000 MHz
 - (D) 800 950 MHz
 - (E) 10 1000 KHz

- 98. Surface tension has the same dimensions as that of
 - (A) coefficient of viscosity
 - (B) impulse
 - (C) momentum
 - (D) spring constant
 - (E) frequency
- 99. A stone falls freely from rest from a height h and it travels a distance $\frac{9h}{25}$ in the last second. The value of h is
 - (A) 145 m
 - (B) 100 m
 - (C) 122.5 m
- (D) 200 m (E) 175 m
- 100. The area under velocity-time graph for a particle in a given interval of time represents
 - (A) velocity
 - (B) acceleration
 - (C) work done
 - (D) momentum
 (E) displacement

101.	If vectors $\hat{i} - 3\hat{j} + 5\hat{k}$ and $\hat{i} - 3\hat{j} - a\hat{k}$ are equal vectors, then the value of a is					
	(A) 5	(B) 2	(C) – 3	(D) 4	(E) - 5	
			simultaneously on The angle between		resultant of these	
		(B) 60°	(C) 90°	(D) 45°	(E) 30°	

- 103. A fighter aircraft is looping in a vertical plane. The minimum velocity at the highest point is (given r = radius of the loop)
 - (B) $\sqrt{2gr}$ (C) \sqrt{gr} (D) $\sqrt{3gr}$
- 104. Two bodies of masses 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a frictionless pulley. The acceleration of the system is
 - (A) $\frac{g}{2}$ (B) $\frac{g}{3}$ (E) $\frac{g}{4}$

105. Choose the INCORRECT statement:

- (A) No work is done if the displacement is perpendicular to the direction of the applied
- (B) If the angle between the force and displacement vectors is obtuse, then the work done is negative
- (C) Frictional force is non-conservative
- (D) All the central forces are non-conservative
- (E) Kinetic energy is conserved in elastic collision
- 106. Two bodies of masses 4 kg and 5 kg are moving with equal momentum. Then the ratio of their respective kinetic energies is
 - (A) 4:5
- (B) 2:1
- (C) 1:3 (D) 5:4
- 107. If r denotes the distance between the sun and the earth, then the angular momentum of the earth around the sun is proportional to
 - (A) 1. 2
- (B) r
- (C) \sqrt{r} (D) r^2
- (E) r3
- 108. Moment of inertia of a hollow cylinder of mass M and radius r about its own axis is
- (A) $\frac{2}{3}Mr^2$ (B) $\frac{2}{5}Mr^2$ (C) $\frac{1}{3}Mr^2$ (D) $\frac{1}{3}Mr^2$

- 109. The escape speed of a body from the surface of earth (radius of earth = R_E) is
 - (A) $\sqrt{gR_E}$

(B) $\sqrt{\frac{gR_E}{2}}$

 $(C) gR_E$

(D) $\sqrt{2gR_E}$

- (E) 2gR_E
- 110. The time period T of the moon of planet Mars (mass M_m) is related to its orbital radius R (G = Gravitational constant) as
 - (A) $T^2 = \frac{4\pi^2 R^3}{GM_{-}}$

(B) $T^2 = \frac{4\pi^2 G R^3}{M}$

(C) $T^2 = \frac{2\pi R^3 G}{M_m}$

(D) $T^2 = 4\pi M_m GI$

- (E) $T^2 = GM_m R^3$
- 111. Two wires of the same material and same length but diameters in the ratio 1:2 are stretched by the same force. The potential energy per unit volume of the two wires will be in the ratio
 - (A) 1:2

(B) 4:1

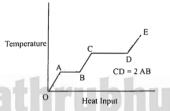
(C) 2:1

(D) 1:1

(E) 16:1

112.	A block of wood floats in water with	$a\left(\frac{4}{5}\right)^{th}$ of its volume submerged. If the	he same block				
	just floats in a liquid, the density of the liquid (in kgm ⁻³) is						
	(A) 1250	(B) 600	(C) 400				
	(D) 800	(E) 750					
113.	If T is the surface tension of a liquid, the energy needed to break a liquid drop of radius R into 64 drops is						
	(A) $6\pi R^2 T$ (D) $8\pi R^2 T$	(B) $\pi R^2 T$ (E) $4\pi R^2 T$	(C) 12πR ² T				

114. If the amount of heat given to a system is 35 J and the amount of work done on the system is 15 J, then the change in internal energy of the system is


(A) -50 J

(B) 20 J (E) -20 J

(C) 30 J

(D) 50 J

115. A solid material is supplied with heat at constant rate and the temperature of the material changes as shown. From the graph, the FALSE conclusion drawn is

- (A) AB and CD of the graph represent phase changes
- (B) AB represents the change of state from solid to liquid
- (C) latent heat of fusion is twice the latent heat of vaporization
- (D) CD represents change of state from liquid to vapour
- (E) latent heat of vaporization is twice the latent heat of fusion
- 116. When the temperature of a rod increases from t to $t+\Delta t$, its moment of inertia increases from I to $1+\Delta I$. If α be the coefficient of linear expansion of the rod, then the value of $\frac{\Delta I}{I}$ is
 - (A) $2\alpha\Delta t$
- (B) $\alpha \Delta t$
- (C) $\frac{\alpha \Delta t}{2}$ (D) $\frac{\Delta t}{\alpha}$ (E) $\frac{\Delta t}{2\alpha}$

- 117. The motion which is NOT simple harmonic is
 - (A) vertical oscillations of a spring
 - (B) motion of simple pendulum
 - (C) motion of a planet around the sun
 - (D) oscillation of liquid column in a U-tube
 - (E) vertical oscillation of a wooden plank floating in a liquid

- 118, A simple pendulum of frequency n falls freely under gravity from certain height from the ground level. Its frequency of oscillation will
 - (A) remain unchanged
 - (B) be greater than n
 - (C) be less than n
 - (D) become zero
 - (E) become infinity
- 119. Air is blown at the mouth of an open tube of length 25 cm and diameter 2 cm. If the velocity of sound in air is 330 ms⁻¹, then the emitted frequencies are (in Hz)
 - (A) 660, 1320, 2640
 - (B) 660, 1000, 3300
 - (C) 302, 664, 1320
 - (D) 330, 990, 1690
 - (E) 330, 660, 990
- 120. Two sound waves travel in the same direction in a medium. The amplitude of each wave is A and the phase difference between the two waves is 120°. The resultant amplitude will be
 - (A), $\sqrt{2}A$

(B) 2A

(C) 3A

(D) 4A

(E) A