FURTHER MATHEMATICS STANDARD LEVEL PAPER 2

Tuesday 13 November 2001 (morning)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures, as appropriate.
- Write the make and model of your calculator on the front cover of your answer booklets *e.g.* Casio *fx-9750G*, Sharp EL-9600, Texas Instruments TI-85.

881–255 7 pages

You are advised to start each new question on a new page. A correct answer with **no** indication of the method used will usually receive **no** marks. You are therefore advised to show your working. In particular, where graphs from a graphic display calculator are being used to find solutions, you should sketch these graphs as part of your answer.

1. [Maximum mark: 14]

(i) In a candy factory sweets are packed in bags whose masses are distributed normally with a mean of 100 g and standard deviation of 1 g. Find the probability that the mass of 10 bags selected at random will be within 5 g of the expected mass?

[4 marks]

(ii) A hospital in a town has recorded the number of newborn babies per day during a period of 100 days, with the following results:

Number of babies (x_i)	0	1	2	3	4	5
Number of days	8	28	31	18	9	6

(a) Show that the mean number of newborn babies per day is 2.1.

[1 mark]

(b) It is believed that this distribution may be modelled by a Poisson distribution. Some of the expected frequencies are given in the table below.

x_i	f_o	f_e
0	8	а
1	28	25.7
2	31	b
3	18	18.9
4	9	9.9
5	6	9.9
6 or more	0	c

- (i) Calculate values of a, b and c.
- (ii) Test, at the 5% level of significance, whether or not the given distribution can reasonably be modelled by a Poisson distribution.

[9 marks]

2. [Maximum mark: 19]

(i) (a) Which of the following graphs, if any, are planar? Justify your answer.

(i) A D B

[6 marks]

(b) **Ore's theorem:** In a simple graph G with n vertices, where $n \ge 3$, if $\deg A + \deg B \ge n$ for each pair of two non-adjacent vertices A, B in G then G is Hamiltonian.

Use the theorem to determine whether the following graph is Hamiltonian and find, if possible, a Hamiltonian cycle.

[4 marks]

(ii) Find all positive integers n smaller than 500 such that $n \equiv 4 \pmod{19}$ and $n \equiv 1 \pmod{11}$.

[9 marks]

3. [Maximum mark: 23]

(i) M is the set of all $n \times n$ matrices. A relation R is defined on M as follows:

A R B if and only if there exists an invertible matrix X such that $B = X^{-1} AX$. Prove that R is an equivalence relation.

[8 marks]

(ii) Show that the intersection of two subgroups of a group is a subgroup of that group.

[4 marks]

(iii) Let \mathbb{Z}_n be the group of integers under addition modulo n.

(a) Find all subgroups of $\mathbb{Z}_3 \times \mathbb{Z}_3$.

[6 marks]

(b) Hence determine the number of subgroups of $\mathbb{Z}_p \times \mathbb{Z}_p$, when p is prime.

[5 marks]

[10 marks]

- **4.** [Maximum mark: 22]
 - (i) Let the functions f(x) and g(x) be defined by f(x) = 3 2x and $g(x) = e^{1-x}$.
 - (a) Consider the equation f(x) = g(x).
 - (i) Find the exact solution to this equation.
 - (ii) Use the Newton-Raphson method with a starting value $x_0 = 0$ to find an approximate solution to this equation. Give your answer correct to three decimal places.
 - (iii) Use Rolle's theorem to prove that these solutions are the only two solutions to this equation.
 - (b) Let the area between the curves of y = f(x) and y = g(x) be denoted by A. Given that h(x) = f(x) g(x), and that $h^{(4)}(x) = e^{1-x}$, use Simpson's rule with 8 intervals to show that the maximum error in evaluating A does not exceed 0.00002. [5 marks]
 - (ii) Use the Maclaurin series expansion to approximate sin 3°, giving your answer correct to five decimal places. [7 marks]

881–255 **Turn over**

5. [Maximum mark: 22]

(i) In triangle ABC, the points P, Q and R are on the sides [BC], [CA] and [AB] respectively. The lines (AP), (BQ) and (CR) contain a common point S.

(a) Show that the ratio of AR to BR is equal to the ratio of the areas of the triangles ARS and RBS.

[2 marks]

(b) Hence prove Ceva's theorem.

[5 marks]

(This question continues on the following page)

(Question 5 continued)

(ii) An ellipse E and a circle C are defined by the following parametric equations.

E:
$$x = 4 \cos t$$
, $y = \sin t$, C: $x = 4 \cos t$, $y = 4 \sin t$.

The points M on E and N on C have the same value s for the parameter t, where $s \in]0$, $\frac{\pi}{2}$ [, and the point R on C has the value -s for the parameter t.

(a) The normal to E through M cuts the diameter of C through N at the point P. Show that the point P, as s varies, lies on a circle, and find its radius.

[10 marks]

(b) The normal to E through M cuts the diameter of C through R at the point Q. Describe the locus of Q.

[5 marks]