US F	L	: / S	eco	ad S		ster ic I			_								1e	fuly	7 2 0	009	
Ti	me:	3 hr	s.	-	as	, C	LIC	CL		·CII	ک	<	μС			•	Ma	ıx. N	/lar	ks:10	0
					•			•	٠				•								
No	ete :	2. A	(nsw	er any er all c er to th	bjec	tives .	type	que	stioi	ns o	nly.	in O	MR :	shee	et pa	ge 5	of t	he A			
										<u>PA</u>	RT	<u>– A</u>									-
1		A) ii) A) iii) A) C) iv) A)	has 4.7K The diss 1W The Con The 100	power ipation direct ming's k scre maxin	diss n of t tion of Lef w ru mum B)	ipation ipatio	B) on in reuit 4W luced d rul e of	oss i oss i seach is _ l em le coef on 10	it? 6K.9 h of nf in ficie	a co	ce par condition of C	ralle constant constant	C) I bra W can ng's s law ng is	be a Rig	KΩ es is ledu ht H	1 W	'. Th D) by_	D e tot 9W) al p	10K.C. ower	
	c	Dei	rive a	n expr	ressir	2y -	ene	rov s	•	_	Q1 the		nefic	c fie	1d		<u>o</u> _			(04 1	Marks)
		De	fine c	oeffici ce wit	ient o	of cou	aplin	g an	d es	tabl						self	indu	ctan	се, г	nutua	•
2	a.		0.05	peak	B) valu	0.0	05S ı sine	: wa		C) s 400	0.0)005 its av	S verag	•	D) alue	0.58	} 	s			

When the frequency of the applied voltage in series RC circuit is increased the

C) becomes zero

iii) In a certain RL circuit, $V_R = 2V$ and $V_L = 3V$. The magnitude of total voltage is

D) 3.6V

D) remains same

(04 Marks)

C) -5V

2V

A) increase

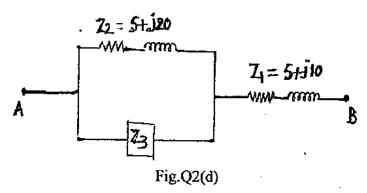
A)

B) 3V

B) decreases

capacitance reactance_

b. Define i) form factor and ii) power factor in ac circuits.


(04 Marks)

c. Obtain the form factor of full rectified sine wave.

(05 Marks)

d. When 220V AC supply is applied across AB terminals in the circuit shown in fig.Q2(d), the total power input is 3.25KW and the current is 20amps. Find the current through Z₃.

(07 Marks)

- a. i) In a balanced three phase load, the power factor of the three phases are 3
 - A) different
- B) same
- C) zero
- D) none of these.
- ii) The power taken by a 3 phase load is given by the expression
- B) $\sqrt{3} V_L I_L \cos \phi$
- C) $3V_LI_L\sin\phi$
- D) $\sqrt{3} V_L I_L \sin \phi$
- iii) In the 2 wattmeter method of measuring 3 phase power, the two watt meters indicate equal and opposite readings when the load power factor angle is degives lagging.
- A) 60
- B) 0
- C) 30
- D) 90
- iv) In delta connected system, the relation between the line current IL and phase current
- $A) I_L = I_{ph}$

- B) $I_L = I_{ph} / \sqrt{3}$ C) $I_L = \sqrt{3} I_{ph}$ D) $I_L = 3I_{ph}$. (04 Marks)
- Obtain the relationship between the phase and line values of voltages and currents in a balanced star connected system.
- c. A balanced three phase star connected load draws power from 440V supply. The two watt meters connected indicate $W_1 = 5KW$ and $W_2 = 1.2KW$. Calculate power, power factor and current in the circuit. (08 Marks)
- a. i) A fuse is a
 - A) current limiting device
- B) protective device
- C) voltage limiting device
- D) None of these.
- A good earthing should provide ii) resistance in earthing path.
- A) low
- B) high
- C) medium
- D) none of these.
- In the energy meter, constant speed of rotation of disc is provided by iīi)
- shunt magnet B) series magnet C) braking magnet D) none of these
- In the measuring instruments, under equilibrium condition, controlling torque (Tc) and deflecting torque (T_d) are
- A) $T_c = T_d$
 - B) $T_c > T_d$
- \overline{C}) $T_c < T_d$
- D) None of these.
- (04 Marks)
- b. Explain with neat diagram working of induction type energy meter. c. Why earthing of electrical apparatus is required? Explain.
- (08 Marks) (04 Marks)
- d. What is the purpose of fuse? What are the requirements of good fuse?
- (04 Marks)

PART - B

5	a. i) The material for commutator brushes is always
_	A) mica B) copper C) cast iron D) carbon
	ii) Which DC motor will be preferred for constant speed line shafting
	· · · · · · · · · · · · · · · · · · ·
	A) cumulatively compound motor B) differentially compound motor
	C) shunt motor D) series motor.
	iii) For a 'P' pole lap wound armature of DC machine the number of parallel paths are
	equal to
	A) 2 B) 2P C) P D) P/2.
	iv) The relationship between the applied voltage and back emf in DC motors is
	A) $V = E_b + I_a R_a$ B) $V = E_b - I_a R_a$ C) $V = E_b$ D) none of these. (04 Marks)
	b. Why starter is needed? With neat sketch, explain 3 – point starter used for DC motor.
	(08 Marks)
	c. A DC series motor is running with a speed of 1000 rpm, while taking a curent of 22 amps
	from the supply. If the load is changed such that the current drawn by the motor is
	increased to 55amps, calculate the speed of the motor on new load. The armature and
	series winding resistances are 0.3Ω and 0.4Ω respectively. Assume supply voltage as
	250V. (08 Marks)
	(vo mana)
6	a. i) Losses which donot occur in transformer are
~	A) copper losses B) magnetic losses C) friction losses D) none of these
	ii) If Copper loss of a transformer at 1/4 th full load is 100W, then its full load copper
	loss would be
	iii) If an ammeter in the secondary of a 100/10V transformer reads 10A, the current in
	the primary would be
	A) 1A B) 2A C) 10A D) 100A
	iv) The no load primary current I ₀ in transformer
	A) is in phase with V_1 B) leads V_1 by 90^0 C) lags behind V_1 by 90^0
	D) lags V_1 by an angle between 0^0 and 90^0 . (04 Marks)
	b. Explain with vector diagram the working principle of transformer on no - load. (06 Marks)
	c. Define the voltage regulation of transformer; what is its importance? (04 Marks)
	d. The primary winding of a transformer is connected to a 240V, 50Hz supply. The
	secondary winding has 1500 turns. If the maximum value of the core flux is 0.00207 Wb,
	determine i) the secondary induced emf ii) number of turns in the primary
	iii) cross sectional area of core if the flux density has maximum value of 0.465 Tesla.
	(06 Marks)
	· · · · · · · · · · · · · · · · · · ·
7	a. i) The field winding of an alternator is excited by
	A) dc B) ac C) both dc and ac D) none of these.
	ii) For full pitch coil, the pitch factor K _p is
	A) 1 B) greater than 1 C) less than 1 D) none of these.
	iii) The number of cycles generated in a 6-pole alternator in one revolution is
	iv) The non salient pole field construction is used for alternator.
	A) low speed B) medium speed C) high speed D) none of these.
	(04 Marks)
	b. Enumerate the advantages of having stationary armature and rotating field system in
	large size alternator. (08 Marks)

D) $N_s = fp/120$

- c. A 3 phase, 50Hz, 16 pole alternator with star connected winding has 144 slots with 10 conductors/slot. The flux per pole 24.8m Wb is sinusoidally distributed, the coils are full pitched. Find i) speed and ii) the line emf. Assume winding factor K_d = 0.96.
 (08 Marks)
- 8 a. i) The relation between rotor frequency (f') and stator frequency (f) is given by
 - A) f' = sf B) f' = f/s C) $f' = \sqrt{sf}$ D) f' = (1-s) f.
 - ii) Synchronous speed of three phase induction motor is given by
 - A) $N_s = 120 \text{ fP}$ B) $N_s = 120 \text{ f/p}$ C) $N_s = 120 \text{ p/f}$ iii) The frame of induction motor is usually made of

A)

silicon steel

- B) cast iron C) alluminium D) bronze
- iv) A 4 pole, 440V, 50Hz induction motor is running at a slip 4%. The speed of motor is
- A) 1260 rpm B) 1440 rpm C) 1500 rpm D) 1560 rpm. (04 Marks) b. What is 'slip' in an induction motor? Explain why slip is never zero in an induction
- motor. (06 Marks)
- c. What are the applications of 3 phase induction motors? (04 Marks)
- d. If the electromotive force in the stator of an 8 pole induction motor has a frequency of 50Hz and that in the rotor 1.5Hz, at what speed is the motor running and what is the slip?

 (06 Marks)