Mathematics
2008 November
Technology BCA
Semester 1
University Exam
Mangalore University

shaalaa.com

BCACAC 103

Reg. No.

Credit Based First Semester B.C.A. Degree Examination October / November 2008

MATHEMATICS

Time: 3 Hours

Max. Marks: 80

Note: Answer any TEN questions from PART A and ONE full question from PART B.

PARTA

1.

a) Show that the improper fraction $\frac{3x^2 - 4x + 5}{x - 1}$ can be written as a sum of polynomial (3x - 1) and $\frac{4}{x - 1}$.

- b) Find the value of x if log_{10} (x-9) = 2
- c) Find the value of n if ${}^{n}P_{2} = 30$
- d) In which quadrant will θ terminate if (i) $\cos \theta$ and $\sin \theta$ are both negative. (ii) $\sin \theta$ is positive and $\cos \theta$ is negative.
- e) Prove that $2 \cos^2 \frac{\pi}{4} 1 = \cos \frac{\pi}{2}$
- f) Simplify $(\cos\theta + \sin\theta)^2 + (\cos\theta \sin\theta)^2$
- g) Prove that the equation of the locus of a point which moves such that the triangle ABP of area 8 sq. units, where A (1, 2) and B (-2, 5) and triangle ABP is traced in the clockwise direction is 3x + 3y 25 = 0.
- Find the equation of the line passing through (3, 2) and perpendicular to the y-axis.
- Show that the line AC is perpendicular to BD where A is (2, 1), B is (-1, 8), C is (0, 1) and D is (4, 3).
- j) Find the midpoint of the line joining the points, (-2, 3) and (3, 7).
- k) Define parabola. Write the standard form.
- I) If the major axis of an ellipse is double the minor axis, find its eccentricity?

PART B

UNIT-I

2. a) Define proper and improper fraction; illustrate with example.

Contd... 2

BCACAC 103

Page No. 2

b) Prove that $\frac{\log \sqrt{27} + \log \sqrt{8} - \log \sqrt{125}}{\log 6 - \log 5} = \frac{3}{2}$

c) Show that $(2 + \sqrt{3})^5 - (2 - \sqrt{3})^5 = 724$

(3+6+6)

OF

- 3. a) Resolve $\frac{x+3}{x^3-x}$ into partial fractions.
 - b) Using logarithms, find the value of (i) $(1.035)^{-12}$ (ii) $\sqrt{88.5 \times 129.7}$
 - c) Find the term independent of x in $\left(x \frac{3}{x^2}\right)^9$ (4+6+5)

UNIT-II

- a) Find the acute angle in radians between the minute and hour hands of a clock when time is 4 hours 20 minutes.
 - b) If $\cos \theta = \frac{24}{25}$ and θ is acute, find the values of other trigonometric functions of θ .
 - c) Solve \triangle ABC, given that a=2, $c=\sqrt{3}+1$, and $B=60^\circ$. (5+5+5)

OR

- a) Express both in degrees and radians the angles of a triangle whose angles are in the ratio 2:3:5.
 - b) Prove that $\frac{\sin(\frac{5\pi}{3})\tan(\frac{4\pi}{3})\sec(\frac{-7\pi}{3})}{\cot(\frac{-3\pi}{4})\cos(\frac{7\pi}{6})\csc(\frac{-7\pi}{4})} = \sqrt{6}$
 - c) i) Prove that $\frac{\tan A + \tan B}{\cot A + \cot B} = \tan A \tan B$
 - ii) simplify $\frac{\sin^2\theta}{1-\cos\theta} \frac{\cos^2\theta}{1-\sin\theta}$ (4+6+5)

UNIT-III

- 6. a) Prove that the points, (7, 9), (3, -7) and (-3, 3) are the vertices of an isosceles right angled triangle and also find its area.
 - b) If A (1, -3), B(5, 2) and C(3, 4) are the vertices of Δ ABC, find the area of Δ ABC and hence find the length of altitude from A.

Contd... 3

BCACAC 103

Page No. 3

c) Find the value of k if the line joining P(2, 3) and Q(5, 7) is perpendicular to the line joining A (5, k) and B(3, 2). (5+6+4)

OF

- a) Prove that the points (2, -1), (3, 4), (-2, 3) and (-3, -2) taken in order are the vertices of rhombus. Also find its area.
 - b) The centroid of a triangle ABC is at (3, 2). If A (-3, 4) and B and C lie on the X-axis and Y-axis respectively, find the coodinates of B and C.
 - c) Find the equations of the straight lines passing through the point (-1, -5) and (i) Parallel (ii) Perpendicular to 2x + 3y = 5. (4+5+6)

UNIT-IV

- a) Define circle. What is the equation of the circle if centre and radius are given? Show that the equation x² + y² + 4x + 6y + 13 = 0 represent a point circle.
 - b) Find the focus, directix, vertex, axis, the end points of latus rectum and the length of the latus rectum of the parabola y² = 12x.
 - c) Evaluate (i) prove that $x \to a$ $\frac{Lt}{x \to a} \frac{x^n + a^n}{x a} = n.a^{n-1}$ for all positive integers n

 (ii) Evaluate $x \to b$ $\frac{Lt}{x^4 b^4}$ (4+6+5)

OF

- 9. a) (i) Find the length of tangent drawn from (1, 0) to the circle $x^2 + y^2 + 8x 8y = 0$.
 - (ii) Find the centre and radius of the circle $4x^2 + 4y^2 + 80x + 12y + 265 = 0$
 - b) Find the centre, vertices, lengths of major and minor axes, the length of LR, foci, End points of LR of the ellipse $\frac{x^2}{q} + \frac{y^2}{4} = 1$
 - c) Evaluate (i) $Lt = \frac{\tan(2x^4) \cdot \sin^2(4x)}{x^6}$ (ii) $Lt = \frac{\cot 2x^4}{x^6} \cdot \frac{\sin^2(4x)}{x^6}$ (iii) $\frac{Lt}{x \to 3} = \frac{\sin 2x \cdot \tan 4x}{x^2}$ (4+6+5)

* * *