Mathematics
2007 November
Technology BCA
Semester 1
University Exam
Mangalore University

shaalaa.com

BCACAC-103

Reg. No.					1
1109.110.	10	-	1 1	-	

Credit Based First Semester BCA Degree Examination October / November 2007 (New Syllabus)

MATHEMATICS

Time: 3 Hours

Max. Marks: 80

PART-A

Note: Answer any 10 questions from the following:

- 1. a. Define partial fraction. Give an example.
 - b. Find the value of log $\sqrt{2}$ 32.
 - c. If $15C_{3r} = 150C_{r+3}$, find r.
 - d. Convert i) 15° into radians.

ii)
$$\frac{2\pi^{c}}{3}$$
 into degrees.

- e. Show that $\cos^2 30^\circ \cos^2 60^\circ = \sin 30^\circ$
- f. Show that $\cos^2(45^\circ \theta) + \cos^2(45^\circ + \theta) = 1$
- g. Find the coordinates of the centroid of the triangle with vertices (2, 3), (-5, 2) and (1, 7).
- h. Find the equation of a line with slope -2/3 and passing through the point (5, -2).
- i. Find the length of the perpendicular drawn from the point (3, 5) to the line 6x-8y+11=0.
- j. In an ellipse the major and minor axes are in the ratio 5:3, What is the eccentricity?
- k. Show that the equation $x^2+y^2+4x+6y+13=0$ represents a point circle.
- I. Define hyperbola. Write the standard form.

2x10=20

FART-B

Note: Answer ONE full question from each unit.

UNIT-I

2. a. Define improper fraction. Express $\frac{3x^2 - 4x + 5}{x - 1}$ as a sum of a polynomial and a proper fraction.

b. Show that $7 \log \frac{16}{15} - 5 \log \frac{24}{25} + 3 \log \frac{81}{80} = \log 2$

06

Using Binomial theorem, find the 7th power of 11.

05

OR

Contd... 2

BC	ACA	C-103 Page No. 2				
3.	a.	Resolve $\frac{x+1}{(x-1)^2(x-2)}$ into partial fractions. 05				
	b.	Using logarithms, find the value of				
		i) 12.96×0.362 ii) $\sqrt{\frac{140}{97}} \times \frac{117}{116}$ 05				
	C.	Find the middle terms in the expansion of $\left[2x - \frac{4}{x}\right]^7$ 05				
4.	a.	Define radian. Prove that radian is a constant. 05				
	b.	Given cot $\theta = \frac{24}{2}$ and θ is acute, find the values of other trigonometric functions				
	c.	i) Prove that $\frac{\sin^2\theta}{1-\cos\theta} - \frac{\cos^2\theta}{1-\sin\theta} = \cos\theta - \sin\theta$				
		of θ . 7 i) Prove that $\frac{\sin^2\theta}{1-\cos\theta} - \frac{\cos^2\theta}{1-\sin\theta} = \cos\theta - \sin\theta$ ii) Simplify $\frac{\cos\theta}{\sec\theta + \tan\theta} + \frac{\cos\theta}{\sec\theta - \tan\theta}$				
		OR				
5.	a.	Find in radian, the acute angle between the hour hand and minute hand of a clock when the time is 10 hours 40 minutes. 05				
	b.	Simplify $\frac{\sin (2\pi - A) \cos (\pi + A) \tan (\frac{\pi}{2} - A)}{\sin (\frac{\pi}{2} - A) \cos (2\pi - A) \sin (\pi - A)}$				
	C.	Solve $\triangle ABC$, given that $a = 5$, $b=5\sqrt{3}$, $c=5$ UNIT-III				
6.	a.	Show that the points A(1, 7), B(-1, 1) and C(0,4) are collinear.				
	b.	Find the area of the triangle formed by the points A(-3, 0), B(4, -) and C(5, 2). Hence find the length of the altitude from A.				
	C.	Find the equations of the sides of the triangle formed by the point A(2, 4), B(4, 6) and C (3, -6).				
		OR				
7.	a.	how that the points (2, -3), (6, 5), (-2, 1) and (-6, -7) taken in order are thertices of a rhombus. Also find its area.				
	b.	Find the ratio in which the line joining the points $(3, 5)$ and $(-7, 9)$ is divided by the point $(1/2, 6)$.				
	C.	Find the equations of the straight lines passing through (2, 4) and				
		(i) parallel to (ii) perpendicular to the line 5x-7y=100 06				
		Contd 3				

BCACAC-103

Page No. 3

UNIT-IV

- a. Find the focus, directrix, vertex, axis, the end points of latus rectum and the length of latus rectum of the parabola y² = 8x.
 - b. Find the equation of the tangent to the circle $2(x^2+y^2)-3x+7y-3=0$ at (1, -4). 05
 - c. (i) Prove that $\begin{array}{ccc} Lt & x^n-a^n \\ x \rightarrow a & x-a \end{array} = na^{n-1}$ for all +ve integers n.
 - (ii) Evaluate Lt x^5+243 $x \rightarrow 3$ (3+2)

OR

- 9. a. Find the vertices, length of major axis, length of minor axis, foci and directrices of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 05
 - b. Evaluate (i) Lt $\frac{\sin 3\theta \tan 4\theta}{\theta \Rightarrow 0}$ (ii) Lt $\frac{\sin 3x^2}{\tan^2 3x}$ 05
 - c) (i) Find the centre and radius of the circle $x^2+y^2-4x+6y+8=0$
 - (ii) Find the length of the tangent from (-3, 1) to the circle $3x^2 + 3y^2 5x 6y 12 = 0$
 - (iii) Write the equation of the circle with
 - (i) centre at (h, k) and radius r.
 - (ii) centre at (0, 0) and radius r.

(1+2+2)

* * *