Ex/BESUS/CE-403/07

B.E. (CE) Part-II 4th Semester Examination, 2007

Concrete Technology

(CE-403)

Time: 3 hours

Full Marks: 70

<u>Use separate answerscript for each half.</u> Assume reasonable values of data, if not supplied.

FIRST HALF

(Answer Q.No.1 and TWO from the rest.)

- 1. Design a concrete mix as per IS:10262,
 - i) Design stipulations:
 - a) Characteristic compressive strength of concrete = 25 MPa
 - b) Maximum size of aggregate = 20 mm (angular)
 - c) Degree of workability required at site = 0.9 (C.F.)
 - ii) Test data for materials:
 - a) Cement used OPC as per IS:269
 - b) Specific gravity of
 - i) Cement 3.15
 - ii) Coarse aggregate 2.75
 - iii) Fine aggregate 2.65
 - c) Water absorption
 - i) Coarse aggregate 0.5%
 - ii) Fine aggregate 1.2%
 - d) Free (surface) moisture
 - i) Coarse aggregate NIL (absorbed moisture also nil)
 - ii) Fine aggregate 2.0%
 - e) Fine aggregates conform to zone-I as per IS:383.
 - III) Data supplied:
 - a) Standard deviation = 4 MPa (Degree of quality control: Good)
 - b) Minimum cement content = 240 kg/m^3 (as per IS 456)
 - c) Maximum w/c = 0.6 (For durability requirement as per IS 456)
 - d) Type of exposure = Mild
 - e) Entrapped air = 2% by volume of concrete
 - f) Required w/c = 0.5 (For target strength as per IS 10262)
 - g) Table-4 for sand & water content and Table-6 for necessary adjustments as per IS 10262 are supplied.

Design the above mix proportion and calculate actual quantities of ingredients required for the mix, per bag of cement. [15]

- 2. a) How does w/c affect the strength of concrete?
 - b) What are the limitations of Abram's law?
 - c) Predict theoretical compressive strength of concrete having w/c=0.5, cement content = 300 gm and degree of hydration = 100% using (i) Abram's law (assuming values of A & B are 98 MPa and 7 respectively), (ii) Power's Equation. [2+2+6]
- 3. a) What is the necessity of curing of concrete?
 - b) Mention different methods for curing of concrete.
 - c) Discuss about the fresh properties of concrete. (including Bleeding and Segregation). [2+2+6]
- 4. a) Briefly focus on different internal and external factors that affect durability.
 - b) How use of admixtures can improve the properties of concrete, in general?

[6+4]

SECOND HALF (Answer Q.No.5 and TWO from the rest.)

5. Write short notes on any three of the followings:

5×3=15

- i) Modulus of Elasticity of concrete
- ii) Shrinkage in concrete
- iii) Creep of concrete
- iv) Different types of cement
- v) Special Concrete
- vi) Bogue's compound
- 6. a) Aggregate of 10 Kg weight is analysed and the weight retained in the various sieves are as follows:
 - i) 20 mm 2.5 Kg
 - ii) 10 mm 3.5 Kg
 - iii) 4.75 mm 1.75 Kg
 - iv) 2.36 mm 1.25 Kg
 - v) 1.13 mm 1.0 Kg

Compute fineness modulus of the aggregate.

- b) What do you mean by 'grading of aggregates'?
- c) Discuss about bulking of sand.

4+2+3=10

7. a) Find out the following parameters of cement after hydration.

i)Volume of hydrated paste ii) volume of capillary water iii)volume of empty capillary pores iv) volume of total pores.

Data given:

Weight of cement = 100 gm, degree of hydration = 100%, w/c ratio = 0.5, Sp. Gravity of cement = 3.15.

b) What is the difference between capillary water and gel water?

7+3=10

8. a) The composition of a certain brand of OPC is as follows: $C_3S = 51\%$, $C_2S = 19.0\%$, $C_3A = 10.0\%$ and $C_4AF = 9.0\%$ If SO_3 content is 3%, find the contents of CaO, SiO_2 , Al_2O_3 and Fe_2O_3 .

b) Highlight the roles of C₃S in cement hydration.

c) What is the role of gypsum in cement manufacturing?

5+3+2=10

TABLE 4

APPROXIMATE SAND AND WATER CONTENTS PER CUBIC

METRE OF CONCRETE FOR GRADES UPTO M35

Nominal Maximum Size of Aggregate	Water content*, Per Cubic Metreof Concrete	
mm	Kġ	by Absolute Volume
10	208	40
20	186	35
40	165	30

^{*} water content corresponding to saturated surface dry. aggregate.

IS: 10262 - 1982

3.3.2 Table 4 is to be used for conctretes grade up to M 35 and is based on the following conditions:

- a) Crushed (angular) coarse aggregate, conforming to IS :383-1970°
- b) Fine aggregate consisting of natural sand conforming to gradeing zone II of Table 4 of IS:383-1970°
- c) Water-cement ratio of 0.6 (by mass), and
- d) Workability corresponding to compacting factor of 0.80.

TABLE 6

ADJUSTMENT OF VALUES IN WATER CONTENT AND SAND PERCENTAGE FOR OTHER CONDITIONS

(Clauses 3.3.4 and 4.1)

Change in Conditios Stipulayed	Adjustment Required In	
for Tables 4 and 5	Waler Conlent	Percent, Sand in Total Aggregate
(1)	(2)	(3)
For sand conforming to grading Zone I, Zone III or	.0	+ 1.5 percent for Zone I - 1.5 percent for Zone III
Zone Iv of Table 4 of IS: 383-1970	•	-3.0 percent for Zone IV
Increase or decrease in the value of compacting factor by 0.1	±3 percent	0
Each 0.05 increase or decrease in free water-cement ration	0	± 1 percent
For rounded aggregate	—15kg/m²	- 7 percent

^{*} Specification for coarse and fine aggregates from natural sources for concrete (second revision).