USN						
					1	

Third Semester B.E. Degree Examination, May/June 2010 Electronic Instrumentation

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Define the following terms as applied to an electronic instrument:
 - ii) Precision iii) Resolution i) Accuracy

(06 Marks)

b. Explain the working of a true RMS voltmeter, with the help of a suitable block diagram.

(06 Marks)

- c. Convert a basic D'Arsonval movement with an internal resistance of 50 Ω and a full scale deflection current of 2 mA into a multrange dc voltmeter with voltage ranges of 0 - 10 V, 0 - 50 V, 0 - 100 V and 0 - 250 V.(08 Marks)
- a. Differentiate analog meters and digital meters.

(04 Marks)

- b. Explain the principle of operation of a digital frequency meter with the help of a block diagram. (10 Marks)
- c. A 4½ digit voltmeter is used for voltage measurements:
 - Find its resolution
- ii) How would 12.98 V displayed on a 10 V range?
- How would 0.6973 be displayed on 1 V and 10 V ranges?

(06 Marks)

a. Draw the basic block diagram of an oscilloscope. Explain the function of each block.

(08 Marks)

- b. Describe the following modes of operation available in a dual trace oscilloscope:
 - i) ALTERNATE mode
 - ii) CHOP mode.

(06 Marks)

- c. Explain the operation of an electronic switch, with the help of a block diagram.
 - (06 Marks)
- With the help of a neat diagram, explain the working of sampling oscilloscope.
 - b. With the help of a neat block diagram, explain the operation of a digital storage oscilloscope. Mention the advantages. (10 Marks)

PART - B

Explain the working of AF sine and square wave generator.

(10 Marks)

b. With a block diagram, explain the working of pulse generator.

(10 Marks)

- What are the limitations of wheat stone's bridge? Derive the balance equation of Kelvin's bridge. (06 Marks)
 - An unbalanced wheat stone's bridge is shown in Fig.Q6(b). Calculate the current through the galvanometer. (06 Marks)

Fig.Q6(b)

- Derive the equation to measure an inductive impedance of a Maxwell's bridge. Also find the series equivalent of the unknown impedance if the bridge constants at balance are $C_1 = 0.01 \ \mu\text{F}, R_1 = 470 \ \text{k}\Omega, R_2 = 5.1 \ \text{k}\Omega \ \text{and} \ R_3 = 100 \ \text{k}\Omega.$ (08 Marks)
- What is gauge factor? Derive appropriate relation for the same.

(10 Marks)

- b. Explain the construction, principle and operation of LVDT. Show characteristic curves. How is the direction of motion determined? (10 Marks)
- Explain important features of LCDs.

(06 Marks)

- b. Explain how power is measured, using a suitable bolometer bridge diagram.
- (06 Marks)

Write a short note on signal conditioning system.

(08 Marks)