[Max. Marks-40

B.Sc. (Part I) Examination PHYSICS

design to maintenance Paper-III and out stand (a)

bas agun a golses (Optics and Laser) a ward (d)

Note :- (1) All questions are compulsory and

carry equal marks.

Time—Three Hours]

		(2) Draw neat diagram wherever necessary.	rer
	EIT	THER Is and explain between small visit	
1.		Explain Fermat's principle. Prove that:	(f) 2 (f)
		$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$	
into avo		when refraction takes place at a co- surface.	ncave
\$ 0	(c) OR	What is lens? State its types.	2
2.	(p)	Define power of a lens. State its unit.	2
š boi a	(q)	Find the focal length of plano-convex lens the radius of curved surface 10 cm and refindex 1.52.	having ractive 2
NPA	-560	5	Contd.)

(r) Prove that in case of a thin convex lens

$$\frac{1}{v} - \frac{1}{u} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right].$$

EITHER

- 3. (a) State the principle of superposition of light. 1
- (b) Draw a neat ray diagram of Newton's rings and derive an expression for the diameter of the bright or dark ring.
- (c) Newton's rings are observed in reflected light of wavelength 5.9×10⁻⁷ m. The diameter of the 10th dark ring is 0.5 cm. Find the radius of curvature of lens and the thickness of the air film.

OR

- (p) Give the theory and working of Michelson's Interferometer.
- (q) When the movable mirror of the interferometer is shifted through 0.0589 mm, 200 fringes move across the field. Calculate the wavelength of light used.

EITHER

- 5. (a) Define 'diffraction'.
- (b) Explain Fresnel's half period zone.
- (c) Derive an expression for area of half period zone.

NPA-5605 2

(Contd.)

OK

- 6. (p) Explain Rayleigh's criteria of resolution.
- (q) Distinguish between Fresnel and Fraunhofer type
 of diffraction.
- (r) Obtain an expression for the resolving power of telescope.

EITHER

- (a) What is plane transmission grating?
- (b) How the plane transmission grating can be used in laboratory to determine the wavelength of light?
- c) State and explain Brewster's law.

OR

- (p) Give the construction and working of Nicol's prism.
- (q) Give the theory of production of circularly and elliptically polarised light.

EITHER

- 9. (a) What do you mean by LASER?
- (b) Explain the difference between spontaneous and stimulated emission.
- (c) Describe the construction and working of RUBY laser.

	OR			
10.	(p)	Explain Rayleigh's critical anialqxA		
		(i) *Optical pumping.		
aqų	islo	(ii) Population Inversion.		3
	(p)	Explain the three level laser system.		3
	(r)	State any four applications of Laser.	(1)	2
		the succession for the demonstration		
	alaw	rubed in Indicatory ingitaterbeine die son		
E		State and explain Brewster Stank 128		
		R Same Company	310	
a' los				
Į.				
		Civil the theaty of production of their		
A.				

(a) What do you mean by LASER?

(b) Express the distributions and process appropriate to the state of the sta