B.Sc. (Part - I): Physics Paper - III

Optics and Laser

Time : Three Hours	Max. Marks : 40
Note: 1. All questions are of marks. 2. Draw the neat diagram.	compulsory and carry equal agram wherever necessary.
EITHER	
 a) Explain the Fermat's p path. 	principle of extremum 2
 Show that, in case of r surface for real image 	refraction at convex of real object,
$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$	4
c) Define power of lens st	ate its unit. 2
OR	
e. p) Explain spherical aberra Lens.	ation due to convex
q) Explain chromatic aben	ration. 3
F - 0314	P.T.O.

	r)	Find the condition for achromatic combination of two lenses of same material having focal	n	E	THER	
		length f_1 and f_2 and separated by the distance from each other.	. 5. 3	a)	Distinguish between Fresnel and Fraunhofer diffraction.	2
	EIT	HER		b)	Explain Fresnel diffraction due to straight edge.	4
3.	a)	Explain the function of compensating glass plate in Michelson's Interferometer.	2	c)	What is half period zone ? OR	2
	b)	Find the expression for wave length of monochromatic light used in the michelson interferometer.	6.	p)	What is diffraction of light?	2
	c)	In moving one mirror in michelson interferometer through a distance 0.1474mm, 500 fringes cross the centre field of view. Find the wavelength of light used.		r)	single slit. State Rayleigh's Criterion for resolution. THER	2
4.	p)	OR Define Interference of light.	7.	a)		2
	q)	Derive the expression for diameter of nth dark Newton's ring.	4	b)	Deduce an expression for the resolving power of plane transmission grating.	673
	r)	Why the center of Newtons ring is always dark.	1	c)	A parallel beam of Sodium light is incident normally on a plane transmission grating of 6000 line/cm. Calculate the wavelength of	
	s)	State the principle of working of Michelson interferometer.	2		light used, if the angle of diffraction for Second order is 45°.	3
AF	031	4 2	AF	- 03	14 3 P.T.	0

OR

8.	p)	What is plane polarised light?	1		
	q)	State and Prove Brewster's law.	3		
	r)	How the Nicol prism used as a polariser?	2		
	s)	What is Quarter wave plate?	2		
	EIT	HER			
9.	a)	What is population inversion?	2		
	b)	Explain construction and working of Ruby laser.	4		
	c)	State four applications of laser in medical field.	2		
OR					
1	0 . p)	Explain stimulated emission.	2		
	q)	What is pulse laser?	2		
	r)	Describe the construction and working of He-Ne laser.	4		
