B. Sc. (Part I)

Physics Paper III (Optics and Laser)

P. Pages: 4

Time: Three Hours Max. Marks: 40 Note: 1. All questions are compulsory and carry equal marks. Draw neat diagram wherever necessary. Either: 1. State and explain Fermat's principle. a) 2 b) Define power of a lens and state its unit. What is monochromatic aberration. c) 1 d) What is spherical aberration? How it can be reduced. OR What is lens? p) 1 What is chromatic aberration? q) 1 Derive the lens formula for thin lens, assuming r) the equation of refraction through lens. 3 AC - 0015 1 P.T.O.

5 9 Z		5 G 6	.g ¥ot⊪	Q	<u>e</u> 13 8	ව <u>.</u>	G G & g	a) D	Either:	(इ (इ	(5)
	Newton's rings are observed in reflected light of wavelength 5.9×10^{-5} cm . The diameter	Derive an expression for the diameter of bright Newton's rings by reflected light.	What are Newton's rings? How they are formed?	of Michelson's interferometer. OR	Explain how wavelength of monochromatic source light can be determined with the help	Draw a neat ray diagram of Michelson's interferometer.	Obtain an expression for the path difference between the reflected beams for the interference in thin films due to reflected light. 3	Define interference of light.		Calculate the power of two thin lenses of focal length f_1 and f_2 separated by a distance 'd'. 3	
		ယ	.	. 19		2	ω	H	S.	မ	•==
	图	E	1200000	60 tz 1273 20 00	8) 13	is is	Ξ		(le.)	3 8 %	
	20		za a		60		E 22		13	Ψŧ	
		ri.		18 ²⁶ 18		6.	变	82		èu .	
	a)		<u>«</u>	2	₽.	ā	. C	<u>c</u>	ь)	a) E	ļ
	Explain plane transmission grating. How it is constructed.	Given wavelength of light 5000 A". Either:	Find the aperature of the objective of a telescope which may be used to resolve two objects separated by 4.88 × 10 ⁻⁶ radians,	Derive an expression for resolving power of a telescope.	Explain Rayleigh's criterion of resolution.	What is the resolving power of an optical instrument.	What is zone plate. How it is constructed? OR	What are Fresnel half period zones.	Distinguish between Fresnel and Fraunhofer type diffraction.	Either: a) Explain the term diffraction of light.	D. D. C.

AC-0015

AC - 0015

PT.O.

	c)	State and explain Brewster's law.	3
2 2	d)	Explain how Nicol prism can be used as a polariser.	2
¥		OR	
8.	p)	What is double refraction, Explain.	2
t 48	q)	Give the principle and construction of Nicol prism.	3
X 83	r)	What is quarter wave plate.	1
	s)	Calculate the thickness of quarter wave plate.	2
		Given : $\lambda = 5890A^\circ$; $\mu_e = 1.553$; $\mu_o = 1.54$	
	Eith	er:	
9.	a)	Distinguish laser from ordinary light.	2
	b)	Explain the main parts of laser system.	3
	c)	Explain the three level laser system.	3
		OR	
10.	p)	What is population inversion?	2
	q)	Describe the construction and working of helium - neon laser.	4
## 13	r)	State any four applications of laser	2
7 <u>.</u>		******	
AC -	001	5 4 109/30	25