B. Sc. (Part I) ## Physics Paper III (Optics and Laser) P. Pages: 4 Time: Three Hours Max. Marks: 40 Note: 1. All questions are compulsory and carry equal marks. Draw neat diagram wherever necessary. Either: 1. State and explain Fermat's principle. a) 2 b) Define power of a lens and state its unit. What is monochromatic aberration. c) 1 d) What is spherical aberration? How it can be reduced. OR What is lens? p) 1 What is chromatic aberration? q) 1 Derive the lens formula for thin lens, assuming r) the equation of refraction through lens. 3 AC - 0015 1 P.T.O. | 5
9 Z | | 5
G
6 | .g
¥ot⊪ | Q | <u>e</u>
13 8 | ව <u>.</u> | G
G & g | a)
D | Either: | (इ
(इ | (5) | |----------|---|--|---|--|--|--|---|-------------------------------------|--|---|--| | | Newton's rings are observed in reflected light of wavelength 5.9×10^{-5} cm . The diameter | Derive an expression for the diameter of bright Newton's rings by reflected light. | What are Newton's rings? How they are formed? | of Michelson's interferometer. OR | Explain how wavelength of monochromatic source light can be determined with the help | Draw a neat ray diagram of Michelson's interferometer. | Obtain an expression for the path difference between the reflected beams for the interference in thin films due to reflected light. 3 | Define interference of light. | | Calculate the power of two thin lenses of focal length f_1 and f_2 separated by a distance 'd'. 3 | | | | | ယ | . | . 19 | | 2 | ω | H | S. | မ | •== | | | 图 | E | 1200000 | 60 tz 1273
20 00 | 8)
13 | is is | Ξ | | (le.) | 3 8 % | | | | 20 | | za a | | 60 | | E 22 | | 13 | Ψŧ | | | | | ri. | | 18 ²⁶
18 | | 6. | 变 | 82 | | èu . | | | | a) | | <u>«</u> | 2 | ₽. | ā | . C | <u>c</u> | ь) | a) E | ļ | | | Explain plane transmission grating. How it is constructed. | Given wavelength of light 5000 A". Either: | Find the aperature of the objective of a telescope which may be used to resolve two objects separated by 4.88 × 10 ⁻⁶ radians, | Derive an expression for resolving power of a telescope. | Explain Rayleigh's criterion of resolution. | What is the resolving power of an optical instrument. | What is zone plate. How it is constructed? OR | What are Fresnel half period zones. | Distinguish between Fresnel and Fraunhofer type diffraction. | Either: a) Explain the term diffraction of light. | D. D. C. | AC-0015 AC - 0015 PT.O. | | c) | State and explain Brewster's law. | 3 | |----------------|------------|--|----| | 2 2 | d) | Explain how Nicol prism can be used as a polariser. | 2 | | ¥ | | OR | | | 8. | p) | What is double refraction, Explain. | 2 | | t
48 | q) | Give the principle and construction of Nicol prism. | 3 | | X
83 | r) | What is quarter wave plate. | 1 | | | s) | Calculate the thickness of quarter wave plate. | 2 | | | | Given : $\lambda = 5890A^\circ$; $\mu_e = 1.553$; $\mu_o = 1.54$ | | | | Eith | er: | | | 9. | a) | Distinguish laser from ordinary light. | 2 | | | b) | Explain the main parts of laser system. | 3 | | | c) | Explain the three level laser system. | 3 | | | | OR | | | 10. | p) | What is population inversion? | 2 | | | q) | Describe the construction and working of helium - neon laser. | 4 | | ##
13 | r) | State any four applications of laser | 2 | | 7 <u>.</u> | | ****** | | | AC - | 001 | 5 4 109/30 | 25 |