
Syllabus for the M. Math. Selection Test–2006

TEST CODE MM

Open sets, closed sets and compact sets in Rn;

Convergence and divergence of sequences and series;

Continuity, uniform continuity, differentiability, mean-value theorem;

Pointwise and uniform convergence of sequences and series of functions,

Taylor expansions, power series;

Integral calculus of one variable : Riemann integration, Fundamental

theorem of calculus, change of variables;

Directional and total derivatives, Jacobians, chain rule;

Maxima and minima of functions of one and several variables;

Elementary topological notions for metric spaces : compactnes, con-

nectedness, completeness;

Elements of ordinary differential equations.

Equivalence relations and partitions;

Primes and divisibility;
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Groups : subgroups, products, quotients, homomorphisms, Lagrange’s

theorem, Sylow’s theorems;

Commutative rings : Ideals, prime and maximal ideals, quotients, con-

gruence arithmetic, integral domains, field of fractions, principal ideal

domains, unique factorization domains, polynomial rings;

Fields : field extensions, roots and factorization of polynomials, finite

fields;

Vector spaces: subspaces, basis, dimension, direct sum, quotient spaces;

Matrices : systems of linear equations, determinants, eigenvalues and

eigenvectors, diagonalization, triangular forms;

Linear transformations and their representation as matrices, kernel and

image, rank;

Inner product spaces, orthogonality and quadratic forms, conics and

quadrics.
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Sample Questions for the Selection Test

Notation : R, C, Q, Z and N denote the set of real numbers, complex

numbers, rational numbers, integers and natural numbers respectively.

(1) Let A ⊆ Rn and f : A → Rm be a uniformly continuous func-

tion. If {xn}n≥1 ⊆ A is a Cauchy sequence then show that

limn→∞ f(xn) exists.

(2) Let f : R2 → R be defined by

f(x, y) = max {| x |, | y |} .

Show that f is a uniformly continuous function.

(3) A map f : R→ R is called open if f(A) is open for every open

subset A of R. Show that every continuous open map of R into

itself is monotonic.

(4) Let S = {(x1, x2, ...xn) ∈ Rn :
∑ | xi |2= 1}. Let

A = {(y1, y2, ...yn) ∈ Rn :
∑ yi

i
= 0}.

Show that the set S + A = {x + y : x ∈ S , y ∈ A} is a closed

subset of Rn.

(5) Let T = {z ∈ C : |z| = 1} and f : [0, 1] → C be continuous

with f(0) = 0, f(1) = 2. Show that there exists at least one t0
in [0, 1] such that f(t0) is in T.

(6) Let f be a continuous function on [0, 1]. Evaluate

lim
n→∞

∫ 1

0

xnf(x)dx

(7) Let N > 0 and let f : [0, 1] → [0, 1] be denoted by f(x) = 1

if x = 1/i for some integer i ≤ N and f(x) = 0 for all other

values of x. Show that f is Riemann integrable.

(8) Let f : (0, 1) → R be defined by

f(x) =

{
0 if x is irrational ,
1
n

if x = m
n

with m,n relatively prime
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Let g : R→ R be defined by

g(x) =

{
0 if x ≤ 0 or x > 1

2
,

1 otherwise.

Show that g ◦ f is not Riemann integrable.

(9) Suppose f : R → R is a continuous function with f(0) = 0.

Define

fn(x) = f(nx), for x ∈ R and n = 1, 2, 3, . . .

Suppose that {fn} is equicontinuous on [0, 1], that is, for every

ε > 0 there exists a δ > 0 such that whenever x, y ∈ [0, 1],

|x − y| < δ, we have |fn(x) − fn(y)| < ε for all n. Show that

f(x) = 0 for all x ∈ [0, 1].

(10) Find the most general curve in R2 whose normal at each point

passes through (0, 0). Find the particular curve through (2, 3).

(11) Find the maximum value of the function

f(x, y, z) = s(s− x)(s− y)(s− z),

where s > 0 is a given constant under the condition

x + y + z − 2s = 0,

and where x, y, z are restricted by the inequalities

x ≥ 0, y ≥ 0, z ≥ 0,

x + y ≥ z, x + z ≥ y, y + z ≥ x.

(12) Let (X, d) be a compact metric space and f : X → X satisfy

d(f(x), f(y)) = d(x, y) for all x, y ∈ X. Show that f is onto.

(13) Let ω be an n-th root of unity such that ωm 6= 1 for any positive

integer m < n. Show that (1 − ω)...(1 − ωn−1) = n [Hint :

Consider the polynomial zn − 1].

Hence deduce the following : if A1, A2, ..., An are the vertices of

a regular n-gon inscribed in a unit circle, prove that

l(A1A2)l(A1A3)...l(A1An) = n,

where l(AB) denotes the length of a line segment AB.



5

(14) Let f(x) be a non-constant polynomial with integer coefficients.

Show that the set S = {f(n)|n ∈ N} has infinitely many com-

posite numbers.

(15) Let G be any group. Prove that any subgroup H of finite index

n in G contains a normal subgroup of index dividing n!.

Hint : Consider the homomorphism from G to the group of

permutations of the set of left cosets of H in G.

(16) Let G be a nonabelian group of order 55. How many subgroups

of order 11 does it have? Using this information or otherwise

compute the number of subgroups of order 5.

(17) Let n ∈ N and p be a prime number. Let f(x) = a0 + a1x +

a2x
2 + · · ·+a`x

` and g(x) = b0 + b1x+ b2x
2 + · · ·+ bmxm, where

ai, bj ∈ Z/pnZ, for all 0 ≤ i ≤ `, 0 ≤ j ≤ m. Suppose that

fg = 0. Prove that aibj = 0 for all 0 ≤ i ≤ `, 0 ≤ j ≤ m.

(18) Let a1, a2, ..., an be n distinct integers. Prove that the polyno-

mial f(x) = (x − a1)(x − a2)...(x − an) + 1 is irreducible in

Z[x].

(19) Prove that x4 − 10x2 + 1 is reducible modulo p for every prime

p.

(20) Consider the two fields Q(
√

2) and Q(
√

3), where Q is the field

of rational numbers. Show that they are isomorphic as vector

spaces but not isomorphic as fields.

(21) Show that the only field automorphism of Q is the identity.

Using this prove that the only field automorphism of R is the

identity.

(22) Suppose f ∈ F [x] be an irreducible polynomial of degree 5,

where F is a field. Let K be a quadratic field extension of F ,

that is, [K : F ] = 2. Prove that f remains irreducible over K.

(23) Let k[x, y] be the polynomial ring in two variables x and y over

a field k. Prove that any ideal of the form I = (x − a, y − b)

for a, b ∈ k is a maximal ideal of this ring. What is the vector

space dimension (over k) of the quotient space k[x, y]/I?

(24) Let A be a n× n symmetric matrix of rank 1 over the complex

numbers C. Show that A = α uut for some non-zero scalar
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α ∈ C and a non-zero vector u ∈ Cn (where ut is the transpose

of u).

(25) Let A be any 2 × 2 matrix over C and let f(x) = a0 + a1x +

a2x
2 + · · ·+ anxn be any polynomial over C. Show that f(A) is

a matrix which can be written as c0I + c1A for some c0, c1 ∈ C,

where I is the identity matrix.

(26) Let T : R3 → R3 be a linear transformation. Show that there is

a line L through origin such that T (L) = L

(27) Consider an n× n matrix A = (aij) with a12 = 1, aij = 0 for all

(i, j) 6= (1, 2). Prove that there is no invertible matrix P such

that PAP−1 is a diagonal matrix.
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Model question paper

Time : 2 hours

a): Attempt any three questions from each group.

b): Each question carries equal weightage.

Group A (any three)

(1) Suppose that f is a real-valued continuous function defined on

R and f(x + 1) = f(x) for all x ∈ R.

(a) Show that f is bounded above and below and achieves its

maximum and minimum.

(b) Show that f is uniformly continuous on R.

(c) Prove that there exists x0 ∈ R such that f(x0 + π) = f(x0).

(2) Let fn : R −→ R be a differentiable function for each n ≥ 1,

with |f ′n(x)| ≤ 1 for all n and x. Assume also that limn→∞ fn(x) =

g(x) exists for all x ∈ R. Prove that g : R→ R is continuous.

(3) Suppose that {ak}∞k=1 is a bounded sequence of nonnegative real

numbers. Show that 1
n

∑n
k=1 ak → 0 as n → ∞ if and only if

1
n

∑n
k=1 a2

k → 0 as n →∞.

(4) Consider the differential equation

d2y

dx2
+ 2

dy

dx
+ 5y = 0.

Suppose that y1(x) and y2(x) are any two linearly independent

solutions of this differential equation. Suppose also that there

exist x1, x2 ∈ R such that x1 < x2 and y1(x1) = 0 = y1(x2).

Show that there is x3 in R such that x1 < x3 < x2 with y2(x3) =

0.
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(5) Let (X, d) be a metric space. For a closed subset A of X, define

the function dA by

dA(x) := inf{d(x, y) : y ∈ A}.

Prove that

(i) |dA(x1)− dA(x2)| ≤ d(x1, x2) for all x1, x2 ∈ X.

(ii) dA(x) = 0 if and only if x ∈ A.

Group B (any three)

(1) For a prime p, Fp(= Z/pZ) denotes the field of integers modulo

p. Determine all primes p for which the system of equations

8x + 3y = 10

2x + 6y = −1

(i) has no solution in Fp;

(ii) has exactly one solution in Fp;

(iii) has more than one solution in Fp. In case (iii), how many

solutions does the system have in Fp?

(2) Let a, b ∈ Z and let d be the G.C.D. of a and b. Let D denote

the subring of Q defined by

D = { r

dk
∈ Q | r ∈ Z, k ∈ N ∪ {0}}.

Show that (am, bn)D = D for all m,n ∈ N; where (am, bn)D

denotes the ideal {amα + bnβ | α, β ∈ D}.

(3) A field L is called an algebraic extension of a subfield k if, for

each α ∈ L, there exists a nonzero polynomial f(x) ∈ k[x] such

that f(α) = 0.

Suppose that k is a field and L is an algebraic extension of k.

Show that any subring R of L, such that k ⊆ R ⊆ L, is a field.
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(4) Let A be an n × n real matrix such that A2 = I, but A 6= ±I

(where I denotes the n× n-identity matrix). Show that

(i) A has two eigenvalues λ1, λ2.

(ii) Every element x ∈ Rn can be expressed uniquely as x1 +x2,

where Ax1 = λ1x1 and Ax2 = λ2x2.

(5) Let N be a normal subgroup of a finite group G such that the

index [G : N ] is relatively prime to |N |, where |N | denotes the

order of N . Show that there is no other subgroup of G of order

|N |.


