\qquad
Karunya University
(Declared as Deemed to be University under Sec. 3 of the UGC Act, 1956)
(Anna University batch)

End Semester Examination - November / December 2008

Subject Title: DIGITAL INTEGRATED CIRCUITS
Time : $\mathbf{3}$ hours
Subject Code: IT212
Maximum Marks: 60

Answer ALL questions

PART - A ($10 \times 1=10 \mathrm{MARKS})$

1. \qquad is the Maximum external noise voltage added to an input signal that does not cause an unreliable change in circuit design.
2. Adding inverters to all inputs \& outputs of an AND gate produces the \qquad logic Junction.
3. In digital logic circuit, the total propagation time is equal to the \qquad of typical gate times, the number of \qquad in the circuit.
4. is the logic circuit that produces a coded output corresponding to the highest valued input.
5. The two types of shift register counters are \qquad .
6. An unwanted voltage or current spike of short duration is known as \qquad .
7. ECL is used for \qquad applications because its speed is superior.
8. The T TL gates in all the available series are in three types of output configuration that are
\qquad , \qquad
\qquad
9. The time required to complete a write operation is called as \qquad .
10. Refreshing circuitry is required for \qquad RAM.

PART - B ($5 \times 2=10$ MARKS)

11. State demorgan's laws
12. How can a decoder be converted into demultiplexer .
13. What are the applications of Shift register?
14. Define Fan in \& Fan out
15. What is meant by combinational PLD?

PART - C ($5 \times 8=40$ MARKS $)$

16. Simplify by using karnaugh map
$\mathrm{F}=\sum_{\mathrm{M}}(0,1,4,5,6,11,14,15,16,17,20,22,30,32,33,36,37,48,49,52,53,59,63)$
(OR)
17. Draw a NAND logic diagram that implement the complements of the following function
(a) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,3,4,8,9,12)$
(b) $\mathrm{A} \bar{B}+\mathrm{ABD}+\mathrm{AB} \bar{D}+\bar{A} \bar{C} \bar{D}+\bar{A} B \bar{C}$
18. Design a Combinational circuit generate the 9's Complement of a BCD digit.
(OR)
19. Construct a 16 X 1 mux with two 8 X 1 and one 2 X 1 Multiplexers. [Use block diagrams]
20. Explain in detail about TTL logic circuits operation and its three variable O / P configurations.
(OR)
21. Draw \& Explain in detail about CMOS Transmission Gate circuits and its characteristics.
22. Explain EPROM and PLA in detail.
(OR)
23. Draw a RAM Cell \& explain its working .write short notes on ROM.
24. Define flip flops \& Explain the types of flip-flops.
(OR)
25. Design a counter with the following repeated binary sequence $0,1,2,3,4,5,6$. Use $\mathbf{J} ; \mathrm{K}$ flip-flops.
