Reg. No.	
----------	--

Karunya University

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

End Semester Examination - November / December 2008

Subject Title: DIGITAL INTEGRATED CIRCUITS Time: 3 hours Subject Code: IT212 Maximum Marks: 100

Answer ALL questions $PART - A (10 \times 1 = 10 MARKS)$

1.	Convert (FACE) 16 into Binary.
2.	Prove that A+AB=A.
3.	Draw the logic symbol of XNOR gate.
4.	A decoder with enable input can function as a
5.	Flip Flops operate with signal levels are referred as
6.	Write the characteristic equation of JK FF
7.	Construct an IC diode from Transistor
8.	is a nonsaturated digital logic family.
9.	Memory unit stores binary information in groups of bits called
10.	PAL has AND array and OR array.

$\underline{PART - B \ (5 \times 3 = 15 \text{ MARKS})}$

- 11. Explain Duality principle with an example
- 12. Give the truth table of Priority Encoder
- 13. Obtain T-flipflop from (i) JK flipflop and (ii) D flipflop
- 14. Give the basic circuit of NMOS NOR gate.
- 15. Draw the logic diagram of Memory cell

$PART - C (5 \times 15 = 75 MARKS)$

16.	a.	Perform X - Y and Y - X using 10's complement	(5)		
		X=72532	` ´		
		Y=3250			
	b.	Add 732 and 398 using BCD	(4)		
	c.	Minimize the given expression using K-Map	(6)		
		F = A'B'C' + B'CD' + A'BCD' + AB'C'			
	(OR)				
17.	a.	Find the complements of the functions F_1 and F_2	(4)		
		$F_1=x'yz'+x'y'z$			
		$F_2=x (y'z'+yz)$			
	b.	Define and prove Consensus Theorems.	(6)		
	c.	Express the Boolean Function $F = xy + x'z$ in product of maxterm form.	(3)		
	d.	Write the operator precedence for evaluating Boolean expression.	(2)		
18.	a.	With a neat block diagram, explain the operation of 4 bit Binary Adder- Subtractor	(6)		
	b.	Implement a Full Adder with decoder circuit.	(4)		
	c.	Explain a 3 bit even parity generator.	(5)		
		(OR)			

(OK)

19.	a. b.	With Truth table and Circuit diagram explain the operation of Octal to Binary encoding Implement the given combinational function using MUX of your choice	ler. (9)
	υ.	Y=AB+A'CD+B'CD'	(6)
20.	a.	With a neat circuit, analyse the operation of D-type positive edge triggered Flipflo	p. (8)
	b.	Explain the operation of Serial adder using D FF. (OR)	(7)
21.	a.	Design synchronous BCD counter with T FFs.	(10)
	b.	Give any two ways to achieve BCD counter using Counter with parallel load.	(5)
22	a.	Define Noise Margin.	(3)
	b.	Explain the operation of basic RTL NOR gate.	(5)
	c.	How will you construct Exclusive-OR gate with CMOS transmission gate.	(7)
		(OR)	
23.	a.	Explain CMOS as Inverter, NOR and NAND.	(12)
	b.	Write the applications of open collector TTL gate.	(3)
24.	. a.	Explain Memory decoding in detail.	(12)
	b.	Give the steps for WRITE operation in random access memory	(3)
25		(OR)	(2)
25.	a.	Define Combinational PLD.	(2)
	b.	Give the basic configurations of three combinational PLDs	(6)
	c.	Design a combinational circuit using ROM, the circuit accepts a 3-bit number and gan output binary number equal to the square of the input number.	generates (7)