Karunya University

(Declared as Deemed to be University under Sec.3 of the UGC Act, 1956)

End Semester Examination – November / December 2009

Subject Title:DIGITAL INTEGRATED CIRCUITSTinSubject Code:IT212Maximum

Time : 3 hours Maximum Marks: 100

<u>Answer ALL questions</u> <u>PART – A (10 x 1 = 10 MARKS)</u>

- 1. Write the expansion for ASCII.
- 2. What are canonical forms?
- 3. What are universal gates?
- 4. Data selector is also called____
- 5. Basic building block of the sequential logic circuit is _____.
- 6. Write any 2 uses of counters.
- 7. High speed digital logic family is _____.
- 8. Define fan out.
- 9. Power consumption is high in SRAM (true or false)
- 10. What is PAL?

$\underline{PART - B} (5 \times 3 = 15 \text{ MARKS})$

- 11. State De Morgans theorem.
- 12. Design a half adder circuit.
- 13. Write the characteristics table of D-flip flop.
- 14. Mention the special characteristics of digital logic families.
- 15. Draw the configuration of PROM.

<u>PART – C (5 x 15 = 75 MARKS)</u>

16.		$(110101.1110)_2 = ()_8$ $(650)_{10} = ()_{16}$	(2) (2)	
	c.	$(0.011)_2 = ()_{10}$	(2)	
	d.	Represent +6132.789 in floating point	(2)	
	e.	Write short notes on error detecting codes.	(7)	
	(OR)			
17.	a.	Simplify $F(w,x,y,z) = \sum (0,1,4,5,8,9)$ using karnaugh map.	(8)	
	b.	Simplify the expression $AB+A(B+C)+B(B+C)$ using Boolean algebra techniques.	(7)	
18. Design a 3 to 8 line decoder. (OR)				
19.	a.	Draw the block diagram of two bit magnitude comparator and design the same.	(10)	
	b.	Design a 2 bit odd parity generator.	(5)	
20.		Draw a clocked JK flip flop using AND and NOR gates	(5)	
	b.	Explain the operation of serial in-parallel out shift register using D flip flop with nec	•	
		diagram	(10)	
	(OR)			
21.		Design a 4 bit binary ripple counter using 'T' flip flop	(10)	
	b.	Draw the Logic diagram of a ring counter	(5)	

22. Explain the operation of three state TTL gate with necessary diagram

(OR)

- 23. Discuss the operation of
 - a. CMOS NAND gate
 (7½)

 b. CMOS NOR gate
 (7½)
- 24. Implement the following two Boolean functions with a PLA F1= AB' +AC+A' B C' F2= AC+BC

(OR)

25. Draw the general structure of 4 inputs, 4 AND arrays and 4 outputs PAL.