

[Type text]
[Type text] [Type text]

MCA (Revised)

Term-End Examination

Dec, 2009
IGNOU MCA MCS-31 Solved Question Papers Dec 2009
MCS-031: DESIGN AND ANALYSIS OF ALGORITHMS

TIME: 3 Hours

 Maximum Marks: 100

Note : Question 1 is compulsory. Attempt any three from the rest. All algorithms should be written nearer to C/C++ language.

1. (a) (i) Write Euclid’s Algorithm to find GCD of two positive integers.

A.

GCD(n,m),if n>m
GCD (m,n) =
m,if n=0

GCD(n,MOD(M,N),oterwise

(ii) Differentiate between ‘problem’ and ‘instance’ with an example each.

A. A computational problem can be viewed as an infinite collection of instances together with a solution for every instance. The input string for a computational problem is referred to as a problem instance. and should not be confused with the problem itself. In computational complexity theory. A problem refers to the abstract question to be solved In contrast. An instance of this problem. For example. Consider the problem of primality testing. The instance is a number and the solution is “yes” if the number is prime and “no” otherwise. Alternately. the instance is a particular input to the problem, and the solution is the output corresponding to the given input.

To further highlight the difference between a problem and an instance. consider the following example.

Problem of multiplying two positive integers.

There is a general solution to the problem of multiplying two positive integers. We say that (912,2436)is an instance of this problem.

However, multiplying – 12 by 8745 is not an instance of the above problem as -12 is a negative number.
(b) (i) What is recursion? Compare the recursive method and non recursive method to find factorial of an integer.
A. Recursion: A recursive algorithm is one that invokes (makes reference to) itself repeatedly until a certain condition matches, which is a method common to functional programming.
Iterative (i.e. non recursive) algorithms use repetitive constructs like loops and sometimes additional data structures like stacks to solve the given problems. Some problems are naturally suited for one implementation of the other.
Non recursive procedure

Fact=1

For i=1 to n

Fact = fact *i

Print Fact

Recursive procedure

Fact(int n)

{ if (n ==0)

Retunr 1

Else

F = n*Fact(n-1)

}

Print F

Comparison
In recursive, as more and more function calls takes place, space will be more used i.e space complexity is more compare to non recursive as only two variables are going to be reserve space.

In recursive and non recursive both. Time complexity will be O(n).

(ii)
Give asymptotic upper bound for

T(n) = 2T (n/2) + n3 for n > 2

= 1 n ≤ 2

A.
by master method.

i.e. T(n) = LT(n/b) = cnk
here L=2, b=2 k=3

so bk =8

so, L< bk → O(n3)
i.e T(n) = O(nk) => O(n3)

(c)
 Prove the equality

S(n) = 2o +21 +…2n-1 = 2n-1 for n ≥ 1using Mathematical Induction,

A. Basis for n=1

LHS for S(1)= 20 + 21 +..2n-1
=2n-1

=21 -1 = 20 = 1

R.H.S. for (1) = 2n – 1

=21 – 1

=1

So. LHS = RHS

Hypothesis: now for any k. k<N

S(k) : 2n +21 …2k-1 =2k -1______(*)

So for

S(k+1)

LHS 20 +21 +…..+2k-1 +2k
2k-1 +2k
(by hypothesis)

i.e. 2x2 k -1

 2k-1-1 1RHS.
(d) (i)
Given f(x) = 2x 3 + 3x 2 + 1

Show that f(x) = O(x2)

And f(x) O(x2)
A. Big O defined the upper bound on the growth rate of the function. We can say f(n) <= g(n) for all n & n >= no

i.
Constant terms do not matter on Big O

i.e. g(x) = 2x3 +3x2 +1

i.e. x3 + x2 +1

O(x3)+O(x2)

ii
Now, lower order terms do not matter in Big O

i.e. f(x) = x3

=O(x3)

Also

As the big O depicts upper bound of the execution time.

O(max(T1(n), T2(n),….Tm(n) if m statements are there and Ti(n) is the execution time of the ith statement is O(T,(n)).

i.e. O(max(2x3,3x2))

=O(x3)

So. F(x)=O(x3).

(ii)
Writer an algorithm for insertion sort on an array of size n. Estimate the best case running time of insertion sort.

Ans.
Algorithm Insertion sort(A)

For j = j-1

While i>0 and A[i]>key do

A[i+1] = A[i]

I

Best case running time of insertion sort:-
Insertion sort is an elementary sorting algorithm. Sorting algorithm. It has a time complexity of (n2), thus being slower than heap sort, merge sort and also shell sort, Insertion sort is well suited for sorting small data sets of for the insertion of new elements into a sorted sequence.
The while –loop in line 5 executed only once for each j. This happens if given array A is already sorted.

T(n) = an +b = O(n)

It is a linear function of n.

Worst Case
The worst-case occurs, when line 5 executed j. times for each j. This can happens if array A starts out in reverse order

T(n) = an2+bc+c=O(n2)

It is a quadratic function of n.

Since multiply keys with the same value are placed in the same order that they appear in the input array, Insertion sort is stable.

(e) (i)
Give a regular expression for strings containing exactly two is over the alphabet ∑ = {0,1}.

 Ans.

(0/1)(0/1)

(ii)
 Define Finite Automata.

Ans.
A finite state machine (FSM) or finite state automaton (plural: automata), or simply a state machine, is a model of behavior composed of a finite number of states, transitions between those states, and actions. It is similar to a “flow graph” where we can inspect the way in which the logic runs when certain conditions are met. A finite state machine is and abstract model of a machine with a primitive (sometimes read –only) internal memory.

A FSM can be represented using a state diagram (or state transition diagram). Besides this, several state transition table types are used. The most common representation is shown below: the combination of current state (B) and condition(Y) shows the next state (C). The complete actions information can be added only using footnotes. An FSM definition including the full actions information is possible using state tables.
	State transition table

	Current state

Condition
	State A
	State B
	State C

	Condition X
	…
	…
	…

	Condition Y
	…
	State C
	…

	Condition Z
	…
	…
	…

In addition to their use in modeling reactive systems presented here, finite state automata are significant in many different areas, including electrical engineering, linguistics, computer science, philosophy, biology, mathematics, and logic. Finite state machines are a class of automata studied in automata theory and the theory of computation In computer science, finite state machines are widely used in modeling of application. In computer science, finite state machines are widely used in modeling of application behavior, design of hardware digital systems, software engineering, compilers, network protocols, and the study of computation and languages.

(a) Explain the Divide and Conquer technique of solving problem with reference to merge sort algorithm.
Ans.
Divide & Conquer approach to this problem consists of separating the array T into two parts whose sizes are as nearly as equal as possible, sorting these parts by occurs we calls, & then merging the solutions for each part, being careful to preserve the order.
To do this we need an efficient algorithm for merging two sorted arrays U & V into single array T whose length is the sum of the lengths of U & V

When the number of elements to be sorted is small, or relatively simple algorithm is used.

On the other hand. When this is justified by the number of elements. Merge sort separates the instance into the sub instances half the size, solves each of the recursively, and then combines the two sorted half arrays to obtain the solution to the original instance.

Let t(n) be the time taken by this algorithm to sort an array of n elements. Separating T into U & V Takes line or time . Merging (U.V.T.) also takes linear time.
Consequently, t(n) = t(n/2)+t(n/2)+g(n)

This recurrence, which becomes t(n) = 2T(n/2) + g(n) where n is even is a special case of our general for divide & conquer algorithms.

Now, according to Master’s theorem.

i.e. T(b) = LT(N/6)+Cnk
here L = 2, b=2,

k=1 bk =21 =2

here L = b

So t(n) = 0(n log6n)

(n log2n)

Thus, the efficiency of merge sort is similar to that of heap sort.

e.g.

Array to be sorted

	3
	1
	4
	5
	9
	2
	6
	5

Array is split into two halves.

	3
	1
	4
	5
	
	9
	2
	6
	5

One recursive call on merge sort for each half.

	1
	2
	3
	4
	
	3
	5
	6
	9

One call on merge.

	1
	2
	3
	4
	5
	5
	6
	9

(b) Write an algorithm for finding spanning tree of a connected graph.

Ans.
In prim’s algorithm, the minimum spanning tree growing natural way, starting from an arbitrary not. At each stage we add a new branch to the tree already constructed, the algorithm stops when all the nodes have been reached.

Let B be a set of nodes, and T a set of edges. Initially, B contains a single arbitrary node, and T is empty. At each step prim’s algorithm looks for the shortest path edge {u,v} such the u € B and v €NB. It then adds v to B and {u,v} to T. in this way, the edges in T form at any instant minimum spanning tree for the nodes in B. we continue thus as long as B±N. Here is an informal statement of the algorithm.

Function prim (G = < N,A> graph ; lengt; A→R); set of edge

{Initialization}
T ← ф
B ← anarbitrary member of N}

While B ≠N do

Find e = {u,v} of minimum length such that

U € B and v € NB

T ← T {e}

B← T {v}

Return T

Minimum cost spanning tree using prim’s algo for the following graph

[image: image1.emf]1

8

13

11

2

14

7

14

6

5

4

12

3

9

15

Here 5 nodes are there & 10 edges are there

First of all, sort edges according to their weights.

={{5,4},{1,4},{1,5},{1,3},{1,2},{3,4},{2,5},{2,4},{3,5},{2,3}}
Now scanning from left side from a sorted list of edges.

We will start from an arbitrary root& at each stage. We all a new branch to the free already constructed.

Here, we are starting from an arbitrary root i.e. node (1)

	Edge
	Weight

	{1,4}
	7

	{1,4,5}
	7+6=13

	{1,3,4,5}
	13+9=22

	{1,2,3,4,5}
	22+11=33

So edge are are {{1,4}, {4,5},{1,3},{1,2}}

[image: image2.emf]5

4

1

3

2

This is a minimum cost spanning tree.

===

Q 3.
(a)
Explain the Randomozed quick sort algorithm.
Ans.

· In traditional Quick Sort, We will always pick the first element as the pivot for partitioning.
· The worst case runtime is O(n2) while the expected runtime is O(nlogn) over the set of all input.

· Therefore, some input are born to have long runtime, e.g., an inversely sorted list.

· In randomized Quick Sort, we will pick randomly an element as the pivot for partitioning

The expected runtime of any input is O(nlogn).

Analysis of Randomized QS

· Let s(i) be the ith smallest element in the input list S.

· Xij is a random variable such that Xij =1 if s(i) is compared with s(j): Xij =0 otherwise.
· Expected runtime t of randomized QS is :
· E[Xij] is the expected value of Xij over the set of all random choices of the pivots. Which is equal to the probability pij that s(i) will e compared with s(j).
· We can represent the whole sorting process by a binary tree T:
· Notice that s(i) will be compared with s(j) where i<j if and only if s(i) of s(j) is the first one among the set {s(i), s(i+1),….s(j)} to be selected as the pivot.
Note that Pij =2/(j-i+1).

Therefore, the expected runtime t:

.t =∑
Note that

1+1/2+1/3+…..+1/n =ln n
Randomized QS is a Las Vegas algorithm.

Include<iostream>

Using namespace std:

Void quiek Sort(int numbers[]. Int array size):

Void rand Quick Sort(int numbers[].int left int right):

Int main()

{

int K[10];

int r=0;

//array size of 10

cout<<”Enter 10 values in unsorted order : /n”;

for(int i=0; i<10;i+4)}

cin>>k[i];
//user inputs values

{

rand QuiekSort(k.i.r-l);
//sort function being used

cout<<”nThe Sorted oreder is : n”:

for (int j=0: j<10: j++)}

cout<<k[j]<<””;
//sorted order output

}

Cout <<endl;

}

void quick Sort(int numbers[],int array_size)

}

rend Quick Sort(numbers 0, array_size-1);

}

void rand Quick Sort(int numbers[].int left, int right)

{

if(left>=right)

into pivot=numbers[left +rand()%10];

into left Index = left;

int right Index = right-1;

while(left<=right)

{

while ((numbers[right]>=pivot)&&(left<right))

right--;

if(left !=right)

{

numbers[left]=numbers[right];

left++;

}

while ((numbers[left]<=pivot)&&(left<right))

left++;

if(left !=right)

{

numbers[right]=numbers[left];

right--;

 }

}

numbers[left] = pivot;

pivot = left;

left = left Index ;

right = right Index ;

if (left < pivot)

 rand Quick Sort(numbers, left. Pivot-1);

if r(right > pivot)

 rand Quick Sort(numbers, pivot+1, right);

}

Runtime of Randomized Quick sort is O(n log n)with prob at least

Proof:
Height of the tree is O(log n)with probability at least 1-1/n

Runtime in this case: O(n log n)

(b)
Find the number of comparisons for sorting A ={9,7,6,8,1,2}using randomized quick sort.

A.
please refer similar Q.

(C)
Give the average case analysis for running time of quick sort.

A.
In case of quick sort, if partition occurs in middle i.e. each part contains elements is & last case

 T(n) = 0(n log n)

If partition occurs in such a way that in one portion only one element &(b-1) elements in other portion then it is worst case i.e. T(n) =0(n2)
Average case

If one partition is having 10% element & second partition is having 90% elements.

i.e. T(n) = T(n/10)+T(9n/10)+0(n-1)

Step -1

[image: image3.emf]Cn T(n/10)

T(9n/10)

Ste[- 2

[image: image4.emf]Cn Cn/10

C9n/10..............n

T(n/100) T(n/100) T(n/100) T(n/100)

This will reach at 1 last

i.e. will stop when T(1) will reach

n

So,(9/10)i n=1

· (9/10) i = 1/n

1/(9/10) i =n

(10/9) = n

.i = log10/9 n)

So T(n) = O(n log10/9 n)

Another e.g.

If 1% on left portion & 99% element on right side.

T(n)
= Ø(n-1) + T(n/100) + T(99n/100)

= Cn + T(n/100) + T(99n/100)

So(99/100)i n=1

.i = log100/99 n

So T(n) = O(n log100/99 n)

 = O(n log n)

===
Q-4
(a)
Obtain the DFS tree for the following graph. Compute the discover time and
finishing time for each vertex.

[image: image5.emf]u v w x y z

Ans.
For DFS. Stack is used for traversal

Path matrix

	
	U
	V
	W
	X
	Y
	Z

	U
	0
	1
	0
	1
	0
	0

	V
	0
	0
	0
	0
	1
	0

	W
	0
	0
	0
	0
	1
	1

	X
	0
	1
	0
	0
	0
	0

	Y
	0
	0
	0
	1
	0
	0

	Z
	0
	0
	0
	0
	0
	1

Stack tracing
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	x
	
	v
	
	y
	
	x
	
	
	
	
	
	z
	
	z
	
	
	

	u
	
	v
	
	v
	
	v
	
	v
	
	v
	
	w
	
	y
	
	y
	
	y
	

Visited Array

	U
	1

	V
	2

	W
	3

	X
	4

	Y
	5

	Z
	6

In stack tracing. We have started from node u. then push its adjacent nodes on stack then pop it and mark as visited in visited array and print it.

But if same node comes again then simply call pop again.

Partial Stack tracing is shown but in the same way we will get following DFS traversal sequence

So DFS sequence → uxvywz

There is no unique sequence in BFS or DFS traversal as at every node you can insert its adjacent nodes in any way.

(b)
Explain the algorithm for topological sort. Can the topological sort be applied to the graph? It yes obtain the topological ordering for the same.

Ans.
In graph theory. A topological sort or topological ordering of a directed acyclic graph (DAG) is a linear ordering of its nodes in which each node comes before all nodes to which it has outbound edges. Every DAG has one or more topological sorts.

More formally. Define the reach ability relation R over the nodes of the DAG such that xRy if and only if there is a directed path from x to y. Then, R is a partial order. And a topological sort is a linear extension of this partial order, that is. A total order compatible with the partial order.

The usual algorithms for topological sorting have running time linear in the number of nodes plus the number of edges(O[V]+[E])).

One of these algorithms. Works by choosing vertices in the same order as the eventual topological sort.

First, find a list of “start nodes” which have no incoming edges and inset them into a set S; at least one such node must exist if graph is acyclic. Then:

L← Empty list that will contain the sorted elements

S ←Set of all nodes with no incoming edges

While S is non empty do

Remove a node n from S

Insert n into L

For each node m with an edge e from n to m do

Remove edge e from the graph

If m has no other incoming edges then

Insert m into S

If graph has edges then

Output error message(graph has at least one eycle)

Else

Output message (proposed topologically sorted order: L)

If the graph was a DAG, a solution is contained in the list L (the solution is not unique)

Otherwise, the graph has at least one cycle and therefore a topological sorting is impossible.

Note that, reflecting the non-uniqueness of the resulting sort, the structure S can be simply a set or a queue or a stack. Depending on the order that nodes n are removed from set S, a different solution is created.

An alternative algorithm for topological sorting is based on depth-first search. For this algorithm, edges point in the opposite direction as the previous algorithm (and the opposite direction to that shown in the diagram in the Examples section above). There is an edge from x to y if job x depends on job y (in other words. If job y must be completed before job x can be started). The algorithm loops through each node of the graph. In an arbitrary order. Initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort;

L ←Empty list that win contain he sorted nodes

S ←Set of all nodes

Function visit(node n)

If n has not been visited yet then

Mark n as visited

For each node m with an edge from n to m do

Visit(m)

Add n to l.

For each node n in S do

Visit(n)

Note that each node n gets added to the out put list L only alter considering all other nodes on which n depends (all descendant nodes of n in the graph). Specifically. When the algorithm adds node n, we are guaranteed that all nodes on which n depends are already m the output list L; they were added to L either by the preceding recursive call to visit(), or by an earlier call to visit(). Since each edge and node is visited once, the algorithm runs in linear time. Note that the simple pseudo code above cannot detect the error case where the input graph contains eyeles. The algorithm can be refined to detect cycles by watching for nodes which are visited more than once during any nested sequence of recursive calls to visit() (e.g. by passing a list down as an extra argument to visit(). Indicating which nodes have already been visited in the current call stack).

A directed graph has a topological ordering if and only if it is acyclic.

So it is not applicable to Q.4(a) as there is a cycle in it.

===

5.(a)
 Define N P-complete & problems.

Ans.
NP Complete Problem:- A problem P or equivalently its language L1 is said to be NP complete if the following two conditions are satisfied:

a)
The problem L2 is in the class NP.

b)
For any problem L2 in NP, there is a polynomial time reduction of L1 to L2.

NP Hard Problem:- A problem L is said ti be NP – Hard if for any problem L1 in NP, there is a polynomial time reduction of L1 to L. In other words, a problem L is hard if only condition (b) of NP – completeness is satisfied.

We can conclude form the definitions that every NP – complete problem L must be NP - Hard & additionally should satisfy the condition that L is an NP – class problem.

In general, the process of establishing a problem as NP – complete is a two step process.

a) The first step, which in most of the cases is quite simple, constitutes of guessing possible solutions of the instances, one instance at a time, of the problem & then guess actually is a solution or not.

b) The second step involves designing a polynomial time algorithm which reduces instances of an already known NP - complete problem to instances of the problem, which is intended to be shown as NP – complete.

(b)
Define vertex cover problem for a given graph G = (V.E).

Ans.
Formally, a vertex cover of a graph G is a set C of vertices such that each edge of G is incident to at least one vertex in C. The set C is said to cover the edges of G. The following figure shows examples of vertex covers in two graphs (the set C is marked with red.)

[image: image6.emf]
A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number t is the size of a minimum vertex cover. The following figure shows examples of minimum vertex covers in two graphs.

[image: image7.emf]
Examples

· The set of all vertices is a vertex cover.

· A set of vertices is a vertex is a vertex cover if and only if its complement is an independent set.

· The endpoints of any maximal matching form a vertex cover.

· The complete bipartite graph Km.n has a minimum vertex cover of size t(Km.n)= min(m,n).
Properties

· A set vertices is a vertex cover, if and only if its complement is an independent set. An immediate consequence is:

· The number of vertices of a graph is equal to its vertex cover number plus the size of maximum independent set

(c)
Explain the general steps in establishing NP- completeness proof of given problem.
Ans.

· Use a heuristic. If you can’t quickly solve the problem with a good worst come time, maybe you can come up with a method for solving a reasonable fraction of the common cases.

· Solve the problem approximately instead of exactly. A lot of the time it is possible to come up with a provably fast algorithm, that doesn’t solve the problem exactly but comes up with a solution you can prove is close to right.

· Use an exponential time solution anyway. If you really have to solve the problem exactly, you can settle down to writing an exponential time algorithm and stop worrying about finding a better solution.

· Choose a better abstraction. The NP – complete abstract problem you’re trying to solve presumably comes from ignoring some of the seemingly unimportant details of a more complicated real world problem. Perhaps some of those details shouldn’t have been ignored, and make the difference between what you can and can’t solve.

This is Confidential. Do not Copy
===THE END========================

_1336633028.unknown

_1336633053.unknown

_1336568895.unknown

_1336571853.unknown

_1336575690.unknown

_1336567798.unknown

