[image: image3.emf]

IGNOU4U.BLOGSPOT.COM

MCA (Revised)

Term-End Examination

Dec, 2009
IGNOU MCA MCS-34 Solved Question Papers Dec 2009
MCS-034: SOFTWARE ENGINEERING
TIME: 3 Hours

 Maximum Marks: 100

Note : Question 1 is compulsory. Attempt any three from the rest.
__

1.
(a)
Explain the various phases of SDLC. Briefly explain the proto-typing model.

Ans.

A software development life cycle model is either a descriptive of prescriptive characterization of how software is or should be developed. A descriptive model descries the history of how a particular software system was developed Descriptive models may be used as the basis for understanding and improving software development processes or for building empirically grounded prescriptive models.

System Initiation/Planning: where do systems come from? In most situations, new feasible systems replace or supplement existing information processing mechanisms whether they were previously automated, manual, or informal.

Requirement Analysis and Specification : identifies the problems a new software system is suppose to solve, its operational capabilities, its desired performance characteristics, and the resource infrastructure needed to support system operation and maintenance.

Architectural Design and Configuration Specification: defines the interconnection and resource interfaces between system subsystems, components, and modules in ways suitable for their detailed design and overall configuration management.

Component Implementation and Debugging: codifies the preceding specifications into operational source code implementations and validates their basic operation.

Software Integration and Testing: affirms and sustains the overall integrity of the software system architectural configuration through verifying the consistency and completeness of implemented modules, verifying the resource interfaces and interconnections against their specifications, and validating the performance of the system and subsystems against their requirements.

Software Maintenance: sustaining the useful operation of a system in its host/target environment by providing requested functional enhancements, repairs. Performance improvements, and conversions.

(b) Discuss the importance of DFD over ER diagram. Develop evel-0 DFD and level- 1 DFD for a library management system.

Ans.

DFDs show the flow of information through the system.

Flows and stores on DFDs are essentially representations of information that is defined else where. While the DFD models the active processing of information by the system. The ERD shows how items of data relate, statically, to each other.

ERDs cannot exist in a hierarchy, instead either a single ERD is produced for the entire system analysis or design (when the ERD is considered to relate to the entire DFD hierarchy)

Level 0 DFD

[image: image1]
Level 1
(C)
What is Formal methods? Explain the Goals of Formal Specification in Detail.

Ans. Formal methods are particular kind f mathematically based techniques for the specification, development and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical analyses can contribute to the reliability and robustness of a design. However, the high cost of using formal methods means that they are usually only used in the development of high integrity systems. Where safety or security is important.
Formal methods can be used at a number of levels:

Level 0 : Formal specification may be undertaken and then a program developed from this informally. This has been dubbed formal methods lite. This may be the most cost-effective option in many cases.

Level 1 : Formal development and formal verification may be used to produce a program in a more formal manner. For example. Proofs of properties or refinement from the specification to a program may be undertaken. This may be most appropriate in high integrity systems involving safety or security.

Level 2 : Theorem provers may be used to undertake fully formal machine checked proofs. This can be very expensive and is only practically worthwhile if the cost of mistakes is extremely high (e.g., in critical parts of microprocessor design.) styles of formal methods may be roughly classified as follows:

Specification

Formal methods may be used to give a description of the system to be developed at whatever level(s) of detail desired. This formal description can be used to guide further development activities (see following sections): additionally it can be used to verify that the requirements for the system being developed have been completely and accurately specified.

The need for formal specification systems has been noted for years. In the ALGOL 60 Report, John Backus presented a formal notation for describing programming language syntax (later named a Backus normal form or Baucus –Nauru form (BNF)) : Backus also described the need for a notation for describing programming language semantics. The report promised that a new notation, as definitive as BNF, would appear in the near future: it never appeared.

Development

Once a formal specification has been developed, the specification may be used as a guide while the concrete system is developed (i.e. realized in software and/or hardware) Examples:

· If the formal specification is in an operational semantics. The observed behavior behavior of the concrete system can be compared with the behavior of the specification (which itself should be executable of simulate able). Additionally, the operational commands of the specification may be amenable to direct translation into executable code.

· If the formal specification is in and axiomatic semantics, the preconditions and post conditions of the specification may become assertions in the excitable code.

Verification
Once a formal specification has been developed, the specification may be used as the basis for proving properties of the specification(and hopefully by inference the developed system).

The field of formal methods has its critics. Handwritten proofs of correctness need significant time (and thus money) to produce, with limited utility other than assuring correctness. This makes formal methods more likely to be used in fields where it is possible to perform automated proofs using software. Or in cases where the cost of a fault is high. Example: in railway engineering and aerospace engineering. Undetected errors may cause death. So formal methods are more popular in this field than in other application areas.

(d) What do you mean by scheduling of a S/W Project. Discuss any two types of scheduling techniques used in Software Engineering.

Ans.

· Scheduling is Split project into tasks(=create a WBS)

· Estimate time and resources required to complete each task.

· Organize tasks concurrently to make optimal use of workforce.

· Minimize task dependencies to avoid delays caused by one task waiting for another to complete.

· Dependent on project managers intuition and experience.

Scheduling Techniques

---Mathematical Analysis

· Network Diagrams

· PERT

· CPM

· GERT

---Bar charts

· Milestone Chart

· Gantt Chart

Network Diagrams

· A graphical representation of the task necessary to complete a project

· Visualizes the flow of task & relationships Mathematical Analysis

· PERT

-- Program Exaltation and Review Technique

· CPM

--Critical Path Method

· Sometimes treated synonymously

· All are models using network diagrams

Network Diagrams

· Two classic formats

--AOA : Activity on Arrow

--AON: Activity on Node

· Each task labeled with

--Identifier (usually a letter/code)

--Duration (in std. unit like days)

· There are other variations of labeling

· There is 1 start & 1 end event

· Time goes from left to right

· Time goes from left to right

· Activity on Arrow (AOA)

Or

	Early start
	Duration
	Early finish

	Task name

	Late Start
	Stack
	Late Finish

· AOA consists of

· Circles representing Events

· Such as ‘start’ or ‘end’ of a given task

· Lines representing Tasks

· Thing being done ‘Build UT’

· .a.k.a. Arrow Diagramming Method(ADM)

· AON

· Tasks on Nodes

· Nodes can be circles or rectangles (usually latter)

· Task information written on node

· Arrows are dependencies between tasks

· .a.k.a. Precedence Diagramming Method (PDM)

· Critical Path Method

· The process for determining and optimizing the critical path

· Non-CP tasks can start earlier or later w/o impacting completion date

· Note: Critical Pat may change to another as you shorten the current

· Advantages of Network Diagrams

· Show precedence well

· Reveal interdependencies not shown in other techniques

· Ability to calculate critical path

· Ability to perform “what if “ exercises

· Disadvantages of Network Diagrams

· Default model assumes resources are unlimited

· You need to incorporate this yourself (Resource Dependencies) when determining the “real” Critical Path

· Difficult to follow on large projects

· Program Evaluation and Review Technique

· Based on idea that estimates are uncertain

· Therefore uses duration Ranges
· And the probability of falling to a given range

· Uses an “expected value”(or weighted average) to determine durations

· Use the following methods to calculate the expected durations, then use as input to your network diagram

· Combined to estimate a task duration

 .te = .a + 4m + b

6

Where

te
= expected time

a
= optimitistic time estimate

m
= most likely time estimate

b
= pessimistic time estimate

==

2.
(a)
Write the compete structure of Software Requirements Specification (SRS).

Ans. Requirements document is a reference document.
SRS document is a contract between the development team and the customer.

1.1 Purpose

· delineate the purpose of the particular SRS

· specify the intended audience for the SRS

1.2 Scope

· Identify the SW products to be produced by name

· Explain what the SW product will do, and if necessary, what it will not do

· Describe the application of the SW being specified ie. Benefits, objectives, goals as precisely as possible

1.3 Overview

· Describe what the rest of the SRS contains

· How the SRS is organized

2. General description

2.1 Product perspective

2.2 Product function summary

2.3 Use characteristics

2.4 General constraints

2.5 Assumptions and dependencies

2.1 State whether the product is independent and totally self contained

If the product is component of a larger system then:

· Describe the functions of each component of the larger system and identify interfaces

· Overview of the principal external interfaces of this product

· Overview of HW and peripheral equipment to be used

Give a block diagram showing the major components of the product, interconnections. And external interfaces.

2.2 Product Functions

· Provide a summary of function the SW will perform

· The functions should be organized in such a way that they are understandable by the user

2.3 User Characteristics

· Describe the general characteristics of the eventful users of the product. (such as educational level, experience and technical expertise)

2.4 General Constraints Regulatory policies

· HW limitations

· Interfaces to other applications

· Parallel operation

· Audit function

· Control functions

· Criticality of the application

· Safety and security considerations

3. Specific Requirements

· Functional requirements

· External interface requirements

· Performance requirements

· Design constraints

· Attributes eg. Security, availability, maintainability, transferability/ conversion

· Other requirements

Functional Requirements

Introduction

Describe purpose of the function and the approaches and techniques employed

Inputs and Outputs

Sources of inputs and destination of outputs

Quantities, units of measure, ranges of valid inputs and outputs timing

Processing

Validation of input data

Exact sequence of operations

Responses to abnormal situations

Any methods (eg. Equations. Algorithms) to be used to transform inputs to outputs

External Interface Requirements

User interfaces

Hardware interfaces

Software interfaces

Communications interfaces

Other requirements

· Database: frequency of use, accessing capabilities, static and dynamic organization. Retention requirements for data

· Operations: periods of interactive and unattended operations, backup. Recovery operations

· Site adaptation requirements

4
Appendices

Not always necessary

It may include:

· Sample I/O formats

· DFD. ERD documents

· Results of user surveys. Cost analysis studies

· Supporting documents to help readers of SRS

5.
Index

(b)
Define cohesion and coupling. Explain briefly the various types in each of them.

Ans.
	COUPSING
	COHESION

	Coupling is the degree of interaction

Between two modules.
	Cohesion descries how well the contents of a module cohere (stick together)

	Extent of complexity of interconnections with other modules.
	Extent to which a module is single-minded.

	Ranges from low to high
	Ranges from low to high (single task)

	Goal :low coupling
	Goal: high cohesion

Various types of Coupling are :

Data Coupling: Output from one module is the input to another Using parameter list to pass items between routines.

Control Coupling: Passing control flags between modules so that one module controls the sequencing of the processing steps in another module.

Global Date Coupling: Two or more modules share the same global data structures Internal Data

Coupling: One module directly modifies local data of another module.

Lexical Content Coupling: Some or all of the contents of one module are included in the contents of another

Various types of Cohesion are:

Coincidental: Little or no constructive relationship among the elements of the module

Logical: Module performs a set of related functions, one of which is selected via function parameter when calling the module.

Temporal : Elements are grouped into a module because they are all processed within the same limited time period.

Procedural: Associates processing elements on the basis of their procedural or algorithmic relationships.

Communication: Operations of a module all operate upon the same input data set and or produce the same output data.

Sequential: Sequential association the type in which the output data from one processing element serve as input data for the next processing element.

Functional: If the operations of a module can be collectively described as a single specific function in a coherent way. The module has functional cohesion.
===

3.
(a)

Explain the steps involved in debugging

Ans. Debugging is a methodical process of finding and reducing the number of bugs, or defects, in a computer program or a piece of electronic hardware, thus making it behave as expected. Debugging tends to be harder when various subsystems are tightly coupled, as changes in one may cause bugs to emerge in another

Debugging is concerned with locating and repairing these errors.

Debugging involves formulating a hypothesis about program behavior then testing these hypotheses to find the system error.

[image: image2]
The debugging process

(b) Explain COCOMO Model in debugging

Ans. Most of the work in the cost estimation field has focused on algorithmic cost modeling In this process costs are analyses using mathematical formulae linking costs or inputs with metrics to produce an estimated output. The formulae used in a formal model arise from the analysis of historical data. The accuracy of the model can be improved by calibration the model to your specific development environment. Which basically involves adjusting the weightings of the metrics?
Generally there is a great inconsistency of estimates.

COCOMO’81 (Constructive Cost Model)

Boehm’s COCOMO model is one of the mostly used model commercially. The first version of the model delivered in 1981 and COCOMO II is available now.

COCOMO’81 is derived from the analysis of 63 software projects in 1981. Boehm proposed three levels of the model : Basic, intermediate, detailed.

· The basic COCOMO’81 Model is a single-valued, static model that computes software development effort (and cost) as a function of program size expressed in estimated lines of code (LOC).

· The intermediate COCOMO’81model computes software development effort as a function of program size and a set of “cost drivers” that include subjective assessments of product, hardware, personnel, and project attributes.

· The intermediate COCOMO’81 model incorporates all characteristics of the intermediate version with an assessment of the cost drever’s impact on each step (analysis, design, etc.) of the software engineering process.

COCOMO’81 models depends on the two main equations :

First is development effort (based on MM – man- month / Person-month / staff-month is one month of effort by one person. In COCOMO’81, there are 152 hours per Person-Month, According to organization this values may differ from the standard by 10% to 20%.) for the basic model :

MM=aKDSIb

Second is effort and development time (TDEV.)

TDEV.= cMMd

KDSI means the number of thousand delivered source instructions and it is a measure of size The coefficients a, b, c, and d are decent on the mode of the development. There are three modes of development.

	Development

Mode
	Project characteristics

	
	Size
	Innovation
	Deadline/constraints
	Dev. Environment

	Organic
	Small
	Little
	Not tight
	Stable

	Semi-

Detached
	Medium
	Medium
	Medium
	Medium

	Embedded
	Large
	Grater
	Tight
	Complex

Hardware/customer

interfaces

Here is the coefficients related to development modes for intermediate model :

	Development Mode
	a
	b
	c
	D

	Organic
	3.2
	1.05
	2.5
	0.38

	Semi-detached
	3.0
	1.12
	2.5
	0.35

	Embedded
	2.8
	1.20
	2.5
	0.32

Basic mode uses only size in estimation. Intermediate mode also uses 15 cost drivers as well as size.

In intermediate mode development effort equation becomes :

MM=aKDSIbC
C(effort adjustment factor) is calculated simply multiplying the values of cost drivers. So the intermediate model is more accurate than the basic model.

The steps in producing an estimate using the intermediate model COCOMO’81 are :

1. Identify the mode (organic, semi-detected, embedded) of development for the new product.

2. Estimate the size of the project in KDSI to derive a nominal effort prediction.

3. Adjust 15 cost drivers to reflect your project.

4. Calculate the predicted project effort using first equation and the effort adjustment factor (C.)

5. Calculate the project duration using second equation.

Example estimate using the intermediate COCOMO’81

Mode is organic

Size = 200KDSI

Cost drivers :

· Low reliability => .88

· High product complexity => 1.15

· Low application experience => 1.13

· High programming language experience => .95

· Other cost drivers assumed to be nomianal => 1.00

C = .88 * 1.15 *1.13 * .95 = 1.086

Effort = 3.2 * (2001.05) * 1.086 = 906 MM

Development time = 2.5 * 9060.38

==

4.
(a)
Explain the Software Change request format, Engineering Change order format and Software Change report format

Ans. Efficiently manage design review and approval for multiple type of engineering change orders across the extended product team. Define unlimited change order types, establish appropriate workflow routings for each. And grant external partners access to participate in the approval process.
Software Change Request Format

1.0
Change request Identification.

1.1
Name, identification and description of software configuration items(s):

1.2
Requester and contact details: The name of the person requesting the change and contact details.

1.3
Date, location, and time when the change is requested.

2.0
Description of the change.

2.1
Description : This section specifies a details description of the change request.

2.1.1
Background Information, Background Information of the request.

2.1.2
Examples : Supporting information, examples, error report, and screen shoots

2.1.3
The change : A detailed discussion of the change requested.

2.2
justification for the change : Detailed justification for the request.

2.3
Priority : The priority of the change depending on critical effect on system functionalities.

Software Change Report Format

1.0
Change report Identification

1.1
Name, identification and description of software configuration items(s):

The Name, version numbers of the software configuration is provided. Also, a brief description of the configuration item is provided.

1.2 Requester : The name of the person requesting the change.

1.2.1 Evaluator : The name of the person or team who evaluated the change request.

1.3 Date and time : When change report was generated.

2.0
Overview of changes required to accommodate request.

2.1
Description of software configuration item that will be affected.

2.2
Change categorization : Type of change, in a generic sense.

2.3
Scope of change : The evaluator’s assessment of the change.

2.3.1
Technical work required including tools required etc. A description of the work required to accomplish the change including required tools or other special resources are specified here.

2.3.2
Technical risks : The risks associated with making the change are described.

3.0
Cost Assessment : Cost assessment of the requested change including an estimated of time required.

4.0
Recommendation

4.1.1 Evaluator’s recommendation : This section presents the evaluator’s recommendation regarding the change.

4.2
Internal priority : How important is this change in the light of the business operation and priority assigned by the evaluator.

Engineering Change Order Format

1.0 Change order Identification

1.1
Name, identification and description of software configuration items(s):

The Name, version, numbers of the software configuration is

provided. Also, a brief description of the configuration item is provided.

1.2 Name of Requester

1.3 Name of Evaluator

2.0 Description of the change to be made.

2.1
Description of software configuration(s) that is effected.

2.2
Scope of the change required

The evaluator’s assessment of scope of the change in the configuration items(s)

2.3.1 Technical work and tools required : A description of the work an tools required to accomplish the change.

2.3.2 Technical risks : The risks associated with making the change are described in this section

3.0 Testing an Validation requirements

A description of the testing and review approach required to ensure that the change has been made without any undesirable side effects.

3.1 Review plan : Description of reviews that will be conducted.

3.2 Test Plan.

(b) Briefly, explain different characteristics of a web application.
Ans. Five responsibilities of a Web application
· Design/Maintain the Web site
· Develop marketing - focused content

· Create graphic design that supports interactive content

· Code HTML

· Create online order forms using CGI scripts

· Design rule conversion to Adobe Acrobat portable document formats (PDFs)

· Administer a Unix based server

· Interact with staff members/companies
· Collaborate with engineers to get creative ideas for ideas for Web site.

· Interact woth companies to contribute technical and creative input for MEMS TechNet, a site that links MCNC with companies throughout the U.S.

· Create marketing and advertising brochures that promote the MCNC Web site

· Help other groups with HTML

· Special Project
· Update corporate Web site

· Work with IS on internet announcements, human resources postings. ets.

· Maintain a password protested Web site that supports workgroup type applications with scientists and researchers at the National Academy of Sciences.

· Run and maintain all Web servers.
· Keep current in all technological updates and web developments.

· Everything else
· Keep a budget and maintain financials for the technical microelectronics group

· Develop multimedia and Quick Time applications for the main Web site

· Write Technical documents and reports for federal contracts
===
5. Write short notes on the following.

(a) CASH TOOL

Ans.
CASE tools are to improve routine work through the use of automated support.
CASE tools can be classifies as upper CASE tools and lower CASE tools.

1. Upper CASE tools:

Upper CASE tools primarily help analysts and designers.

It allows the analyst to create and modify the system design.

All the information about the project is stored in an encyclopedia called CASE repository, a large collection of records, elements, diagrams, screens, reports and other information.

Analysis reports may be produced using repository information to show the design is incomplete or contains errors.

2. Lower CASE tools:

Lower CASE tools are used more often by programmers and workers who must implement the systems designed using upper CASE tools.

They are used to generate computer source code. Eliminating the need for programming the system.

(b) S/W Quality

Ans. Quality of software is a conformance to requirements. Set of requirements is very wide for example readability, fault tolerance.
The Nine attributes of software quality are :

Understandability I is possessed by a software product if the purpose of the product is clear. This goes further than just a statement of purpose – all of the design and user documentation must be clearly written so that it is easily understandable.

A software product possesses the characteristic completeness to the extent that all of its parts are present and each of its parts are fully developed. This means that if the code calls a sub routine from an external library, the software package must provide reference to that library and all required parameters must be passed.

A software product possesses the characteristic conciseness to the extent that no excessive information is present. This is important where memory capacity is limited. And it is important to reduce lines of code to a minimum.

A software product possesses the characteristic portability to the extent that it can be operated easily and well on multiple computer configuration. Portability can mean both between different hardware setups such as running on a Mac as well as a PC and between different operating systems such as running on both Mac OS X and GNU/Linux.

A software product possesses the characteristic consistency to the extent that it contains uniform notation. Symbology an terminology within itself.

A software product possesses the characteristic maintainability to the extent that it facilitates updating to satisfy new requirements. Thus the software product which is maintainable should be well documented. Not complex, and should have spare capacity for memory usage and processor speed.

A software product possesses the characteristic testability to the extent that it facilitates the establishment of acceptance criteria and supports evaluation of its performance. Such a characteristic must be built in during the design phase if the product is to be easily testable a complex design leads to poor testability.

(c) Mobile S/W Engineering

Ans.
If an application that is developed for computers can also run on mobile devices, then the entire paradigm of application usage changes as it enables the user to run application from wherever he is .
Following steps are followed in development of any mobile application.

1. The first step is to install J2SE SDK J2ME wireless toolkit runs on java platform.

2. The second step is to install J2ME wireless toolkit. It users the concept of projects rather than files. At end of the creation of the project, you have an MIDP (Mobile Information Device profile) suite. Let us create new project. Let the title be project1’ Along with the title of the project, MIDlet class name should also be given. Let it be projectlet1.

Once these names are confirmed. The process of creating the project project1 commences. As the result, a directory titled project1 will be created in which the following subdirectories will be present.

· Bin

· Lib

· Res

· Src

A compiled MIDlet suite (a. jar file) and the MIDlet suite descriptor (a. jar file) are created in the bin directory. The source code will be in Src directory. Apart from the above mentioned subdirectories. The following subdirectories are also created.

· Tmplass

· Tmplib

View the below steps to guide you through the wireless application development process. The steps below provide toss, kits and papers to help build compelling wireless. Voice. J2ME and offline applications.

(d) Cycloramic complexity
Ans.

Cyclomatic complexity is the most widely used member of a class of a class of static software metrics. Cyclomatic complexity may be considered a broad measure of soundness and confidence for a program. This measure provides a single ordinal number that can be compared to th complexity of other programs. Cyclomatic complexity is often referred to simply as program complexity. Or as McCabe’s complexity. It is often used in concert with other software metrics. A one of the more widely accepted software metrics, it is intended to be independent of language and language format. The Cyclomatic complexity of a software module id calculated from a connected graph of the module (that shows the topology of control flow within the program):

Cyclomatic complexity(CC) = E – N + p

Where,

E =the number of edges of the graph.

N =the number of nodes of the graph

P =the number of connected components (like loops in a graph)

To actually count these elements requires establishing a counting convention (tools to count cyclomatic complexity contain these conventions). The complexity number is generally considered to provide a stronger measure of a program’s structural complexity than is provided by counting lines of code.

=========================THE END=====================

Penalty amount

Send report

Request for

report

Management

Report

Management

Penalty

Book details

Books

Issue details

Book Issue

Reminder for return

Books with penalty

Send penalty

Report

Student

Request for

Book issue

Book Issue details

Member

Member details

Membership

Management

Request for

Discontinuing

Membership

Send member details

Request for create member

Student

Send no dues

Membership

Details, book, fine

Receipt

Send reports

Library

Management

System

Management

Req reports

Req membership. Req

Book. fine

Book

Issue

Management

Student

O

B.12

A.15

Design UI

15

Build UI

12

12

15�

Activity om Node (AON)

Build UI

Design UI

1

2

3

Design error repair

Retest

 program

Repair

error

Locate error

Test cases

Specification

Test results

DO NOT COPY

