AMIETE - CS (OLD SCHEME)

Code: AC10 Time: 3 Hours

Subject: DISCRETE STRUCTURES Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Ch	oose the correct or the best altern	ative in the following:	(2_10)
	a.	Which of these sets are equal A={r,t,s}, B={ s,t,r,s} , C={ t,s,t,r} and D={ s,t,r,s}?		
		(A) sets A and B(C) sets B and D	(B) sets A and D(D) all these sets are equal	
	b.	Let A= $\{1,2,3,4\}$ and R= Φ . Determine that the relation is:		
		(A) reflexive(C) transitive	(B) symmetric(D) none of these	
	c.	How many straight lines can be drawn through 10 points on a circle?		
		(A) 50 (C) 45	(B) 20(D) 40	
	d.	$A \cup B = A \cap B$ if and only if:		
		(A) A is empty set(C) A and B are non-empty sets	(B) B is empty set(D) A and B are empty sets	
	e.	A graph in which all nodes are of equ	n in which all nodes are of equal degree is known as:	
		(A) multigraph(C) regular graph	(B) non regular graph(D) complete graph	
	f.	The number of circuits in a tree with 'n' nodes is:		
		(A) zero (C) n-1	(B) one (D) n/2	
	g.	How many ways can you arrange the letters of the word 'APPLE'?		
		(A) 120(C) 100	(B) 60(D) None of these	

- h. Turing machine is more powerful then Finite State Machine because
 - (A) Tape movement is confined to one direction.
 - (B) It has no finite set.
 - (C) It has the capability to remember arbitrary rely long sequences of input symbol.
 - **(D)** None of these.
- i. The number of colors required to properly colors the vertices of every planar graph is
 - (A) 2 (B) 3 (C) 4 (D) 5

j. When two dice are thrown, find the probability of getting total score seven.

(A) 1/6	(B) 1/3
(C) 1/12	(D) 1/4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. In a survey of 60 people, it was found that 25 read Newsweek magazine, 25 read Time magazine, 26 read Fortune magazine, 9 read both Newsweek and Fortune, 11 read both Newsweek and Time, 8 read both Time and Fortune, 3 read all the magazine.
(i) Find the number of people who read at least one of the three magazines.

(8)

(8)

- (ii) Find in the correct number of people in each of the eight regions of Venn diagram.
- b. Give the converse and contrapositive of the implications
 - (i) If it is hot, then I take cold drinks.
 - (ii) If today is Monday, then tomorrow is Tuesday. (8)
- Q.3 a. Design an FA that accept those strings over $\{0, 1\}$ for which the last two input symbols are 1. (8)
 - b. Prove that, A graph G with *n* vertices, (n 1) edges, and no circuits is a tree. Construct a graph that has 6 vertices and 5 edges but it is not tree. (8)
- Q.4 a. Prove that every Boolean function can be put in Disjunction Normal Form (DNF). (8)
 - b. Show that the following Boolean expressions are equivalent to one another. Obtain there sum of product canonical form.

(i)	2
(ii)	R
(iii)	P

Q.5 a. Let $A = \{1, 2, 3, 4, 6\}$, and let R be the relation on A defined by "x divides y", written x | y.

- (i) Write R as a set of ordered pairs
- (ii) Draw its diagraph

(iii) Find the inverse relation R^{-1} of R. Can R^{-1} be described in word? (8)

b. Explain Kruskal's algorithm and find minimal spanning tree for the graph given below. (8)

- **Q.6** Write short notes on following:
 - (i) Pigeonhole Principle
 - (ii) Warshall's algorithm to find transitive closure
 - (iii) Hamiltonian path
 - (iv) Equivalence relations.
- Q.7 a. What is Partially Ordered Set? Let $S = \{a,b,c\}$ and A = P(S). Draw the Hasse diagram of the poset A with the partial order \subseteq (set inclusion). (8)

(16)

(8)

- b. Prove that, A given connected graph G is an Euler graph if all vertices of G are of even degree. (8)
- Q.8 a. What is the solution of the recurrence relation

 With initial conditions
 ?
 - b. A man is known to speak the truth 2 out of 3 times. He throws a dice and reports that it is one. Find the probability that it is actually one. (8)
- Q.9 a. Prove by induction that for all integers (8)
 - b. How many bit strings of length nine either start with 1 bit or end with the two bits 00? (8)