Instructions

- (1) This question paper consists of two parts: Part A and Part B and carries a total of 100 Marks.
- (2) There is no negative marking.
- (3) Part A carries 20 multiple choice questions of 2 marks each. Answer all questions in Part A.
- (4) Answers to Part A are to be marked in the OMR sheet provided.
- (5) For each question, darken the appropriate bubble to indicate your answer.
- (6) Use only HB pencils for bubbling answers.
- (7) Mark only one bubble per question. If you mark more than one bubble, the question will be evaluated as incorrect.
- (8) If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- (9) Part B has 24 questions. Answer any 12 in this part. Each question carries 5 marks.
- (10) Answers to Part B are to be written in the separate answer book provided.
- (11) Candidates are asked to fill in the required fields on the sheet attached to the answer book.
- (12) Let Z, R, Q and C denote the set of integers, real numbers, rational numbers and complex numbers respectively.
- (13) For two topological spaces (X_1, τ_1) and (X_2, τ_2) , a mapping $f: (X_1, \tau_1) \to (X_2, \tau_2)$ is called a homeomorphism if f is a bijection (i.e., one-to-one and onto) and both f and f^{-1} are continuous. If such an homeomorphism exists then (X_1, τ_1) is said to be homeomorphic to (X_2, τ_2) (or (X_1, τ_1) and (X_2, τ_2) are homeomorphic).
- (14) For $n \ge 1$, the norm given by $||(x_1, x_2, \dots, x_n)|| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$ denote the standard norm on \mathbb{R}^n . The metric given by d(x, y) = ||x - y|| is called the standard metric on \mathbb{R}^n .
- (15) If not mentioned separately then the topology on \mathbb{R}^n is the standard topology (i.e., the topology induced by the standard metric).
- (16) $\log(x)$ denotes the logarithm of x to the base e.

MATHEMATICS

PART A

- (1) Let $f(x, y) = xy + 2x \log(x^2y), x > 0$ and y > 0. Then the point $(x, y) = (\frac{1}{2}, 2)$ is a
 - (A) local minimum.
 - (B) local maximum but not a global maximum.
 - (C) saddle point.
 - (D) global maximum.

(2) Let $\{f_n\}_{n\geq 1}$ be a sequence of functions defined on [0,1] as follows:

$$f_n(x) = \begin{cases} nx, & \text{if } 0 \le x < \frac{1}{n}, \\ 2 - nx, & \text{if } \frac{1}{n} \le x < \frac{2}{n}, \\ 0, & \text{if } \frac{2}{n} \le x \le 1. \end{cases}$$

Then,

- (A) there exists a $x \in [0, 1]$ such that the sequence $\{f_n(x)\}_{n \ge 1}$ is not convergent.
- (B) the sequence $\{f_n\}_{n\geq 1}$ is equicontinuous.
- (C) the sequence $\{f_n\}_{n\geq 1}$ converges uniformly to $f\equiv 0$ on [0,1].

(D)
$$\int_{[0,1]} |f_n(x)| dx \to 0$$
, as $n \to \infty$.

(3) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. If |f'| is bounded, then

(A) f is bounded.

- (B) $\lim_{x \to \infty} f(x)$ exists. (C) f is uniformly continuous.
- (D) The set $\{x : f(x) = 0\}$ is compact.

(4) Let $f: [0, \infty) \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{x}{1 - e^{-x}}, & \text{if } x > 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Then the function f is

- (A) continuous at x = 0.
- (B) bounded.
- (C) increasing.
- (D) zero for at least one x > 0.

(5) For $A \subseteq \mathbb{R}^2$, let τ be the subspace topology on $X = \mathbb{R}^2 \setminus A$. Then

- (A) A is countable $\implies (X, \tau)$ is connected.
- (B) (X, τ) is connected $\implies A$ is finite.
- (C) A is unbounded $\implies (X, \tau)$ is compact.
- (D) A is open $\implies (X, \tau)$ is compact.
- (6) Let τ_1 be the topology on \mathbb{R} generated by the base $\mathcal{B} = \{[a, b) : a < b \in \mathbb{R}\}$. If τ_0 is the standard topology on \mathbb{R} and Id: $\mathbb{R} \to \mathbb{R}$ is the identity mapping then
 - (A) Id: $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is continuous but not an open mapping.
 - (B) Id: $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is an open mapping but not continuous.
 - (C) Id: $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is a homeomorphism.
 - (D) Id: $(\mathbb{R}, \tau_1) \to (\mathbb{R}, \tau_0)$ is neither continuous nor an open mapping.
- (7) Let A, B, C be non-empty sets and $f : A \to B$ and $g : B \to C$ be two mappings. If $g \circ f$ is a bijection, then
 - (A) both f and g must be bijections.
 - (B) f must be injective and g must be bijective.
 - (C) f must be onto and g must be injective.
 - (D) f must be injective and g must be onto.

- (8) If A is a non-empty open subset of \mathbb{R}^2 , then
 - (A) A is the interior of its closure.
 - (B) the closure of A is compact.
 - (C) A is the countable union of proper open subsets of A.
 - (D) f(A) is open for any continuous function $f : \mathbb{R}^2 \to \mathbb{R}$.

(9) Let γ be the circle defined by $\gamma(\theta) = 2e^{i\theta}$, $0 \le \theta \le 2\pi$. Then, $\int_{\gamma} \frac{e^z}{z(z-1)} dz =$ (A) 2π .

- (B) $2\pi i$.
- (C) $2\pi i(e+1)$.
- (D) $2\pi i(e-1)$.

(10) Consider the function $f(z) = \left(\frac{\sin(e^z - 1)}{z}\right)^2$ on $\mathbb{C} - \{0\}$. Then z = 0 is

- (A) a simple pole for f(z).
- (B) a pole of order 2 for f(z).
- (C) an essential singularity for f(z).
- (D) a removable singularity for f(z).

(11) The function $f(z) = 1 + 2z + 3z^2 + 4z^3 + \cdots$ is

- (A) analytic near z = 0.
- (B) analytic near z = 1.
- (C) an entire function.
- (D) not analytic near any point in \mathbb{C} .

(12) The set of complex numbers z = x + iy such that $|e^{z^2}| \le 1$ is given by

(A) $-x \le y \le x$. (B) $-y \le x \le y$. (C) $-x^2 \le y \le x^2$. (D) $-y^2 \le x \le y^2$. (13) Let A, B be two real 3×3 matrices. Then,

(A)
$$\operatorname{Rank}(AB) = \min\{3, \operatorname{Rank}(A) + \operatorname{Rank}(B)\}\$$

- (B) $\operatorname{Rank}(AB) = \min\{3, \operatorname{Rank}(A) \times \operatorname{Rank}(B)\}.$
- (C) $\operatorname{Rank}(AB) \le \min\{\operatorname{Rank}(A), \operatorname{Rank}(B)\}.$
- (D) $\operatorname{Rank}(AB) \ge \max{\operatorname{Rank}(A), \operatorname{Rank}(B)}.$

(14) Let

$$A = \left[\begin{array}{rrrr} 1 & 2 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ -2 & 0 & -4 & 3 \end{array} \right].$$

The dimension of the null space $\mathcal{N}(A)$ is

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.

(15) Let K be a non-zero real 3×3 matrix. If K is skew symmetric, then

- (A) K is invertible.
- (B) all eigen values of K are real.
- (C) e^{tK} is an orthogonal matrix for $t \in \mathbb{R}$.
- (D) trace(K) > 0.

(16) Which of the following is the order of a non-abelian group?

- (A) 4.
- (B) 8.
- (C) 9.
- (D) 13.

- (17) The number of subgroups of the cyclic group G of order 15, excluding the trivial group and G, is
 - (A) 2.
 - (B) 3.
 - (C) 13.
 - (D) 14.
- (18) Let S_4 be the group of permutations on four letters. The number of elements of order 2 in the group S_4 is
 - (A) 6.
 - (B) 9.
 - (C) 4.
 - (D) 12.
- (19) Let R[x] be the ring of polynomials in one variable. For which one of the following polynomials f(x), is the quotient ring $R/\langle f(x) \rangle$ a field?
 - (A) $x^3 1$.
 - (B) $x^3 + 1$.
 - (C) $x^2 2$.
 - (D) $x^2 + 2$.

(20) The general solution of the ODE: xy' + y = 1 is

(A) $y = (1 + Cx)^{-1}$. (B) $y = C + x^{-1}$. (C) $y = C(1 + x^{-1})$. (D) $y = 1 + Cx^{-1}$.

PART B

(1) Consider the real sequence $\{a_n\}_{n\geq 2}$ defined by

 $a_n = n(a\log(n) + b\log(\log(n)))e^{-[a\log(n) + b\log(\log(n))]}.$

Find all real values of a and b for which the series $\sum_{n>2} a_n$ converges.

- (2) Let $f, u : [0, \infty) \to [0, \infty)$ be such that u is onto, and f is continuous. If $g(x) = \int_0^{u(x)} f(t) dt$ is constant for all x, then show that $f \equiv 0$.
- (3) Find the maximum and minimum of the function f(x, y, z) = x 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.
- (4) Consider the polynomial $P(x) = \sum_{j=0}^{n} c_j x^j$, where *n* is a non-negative odd integer and $c_0, c_n \neq 0$. If $c_0 c_n > 0$, then show that *P* has at least one zero on the negative half of the real line.
- (5) If a is a positive constant, then show that $\lim_{N\to\infty} \prod_{n=1}^{N} (1-e^{-na})$ exists and is strictly positive.

[Here \prod denotes the product.]

- (6) Let f be a measurable function on \mathbb{R} satisfying $\int_{\mathbb{R}} |f(x)| dm(x) < \infty$, where m is the Lebesgue measure on the Borel subsets of \mathbb{R} . Show that the function $g(t) = \int_{\mathbb{R}} e^{itx} f(x) dm(x)$ is uniformly continuous on \mathbb{R} .
- (7) Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Assume that there is **no** $x \in \mathbb{R}$ for which f(x) = 0 = f'(x). Show that the set $S = \{x : f(x) = 0, 0 \le x \le 1\}$ is a finite set.
- (8) Let (X, τ) be a Hausdorff topological space. If X is finite then show that (X, τ) is metrizable (i.e., τ can be obtained from a metric d on X).
- (9) Let $f \colon \mathbb{R} \to \mathbb{R}$ be a bijective mapping. If f is continuous then show that f is a homeomorphism.

- (10) Show that $[0,1] \times [0,1)$ is homeomorphic to $[0,1) \times [0,1)$. [Here the topologies are the subspace topologies from \mathbb{R}^2 .]
- (11) Let Δ denote the open unit disc in the complex plane and $f : \Delta \to \mathbb{C}$ be analytic. Suppose that $f''(\frac{1}{2^n}) = f(\frac{1}{2^n})$ for all $n = 1, 2, \ldots$ Show that there exists an entire function $F : \mathbb{C} \to \mathbb{C}$ such that F(z) = f(z) for all $z \in \Delta$.
- (12) Find $c \in \mathbb{C}$ so that the function $f(z) = \frac{2z^2+1}{z^4-5z^2+4} \frac{c}{z+1}$ is analytic near z = -1.
- (13) Let Δ be the unit disc in the complex plane. Show that there is no non-constant analytic function $f : \Delta \to \mathbb{C}$ that satisfies

$$\operatorname{Im}(f(z)) = \sin(\operatorname{Re}(f(z)) + \operatorname{Re}(f(z))) \quad \text{for all} \quad z \in \Delta.$$

- (14) Let U and V be two subspaces of a finite dimensional inner product space $(W, \langle \cdot, \cdot \rangle)$. If $W = U \oplus V$ (V is not necessarily U^{\perp}) then show that $W = U^{\perp} \oplus V^{\perp}$. [Here $V^{\perp} := \{ \alpha \in W : \langle \alpha, \beta \rangle = 0$, for all $\beta \in V \}$.]
- (15) Consider the mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by f(x, y, z) = (x y, y z, z x). Show that f is linear. Find the image of f.
- (16) For i = 1, 2, 3, let P_i be the plane in \mathbb{R}^3 given by $a_i x + b_i y + c_i z + d_i = 0$. If the rank of the matrix $\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$ is 2 then show that either $P_1 \cap P_2 \cap P_3 = \emptyset$ (empty set) or $P_1 \cap P_2 \cap P_3$ is a straight line.
- (17) Let θ denote the 3 × 3 null-matrix $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Let $A \neq \theta$ be a 3 × 3 real

matrix. If $A^3 + A = \theta$, then show that the rank of A is 2.

- (18) Let A be a 2×2 matrix such that $A^3 = \theta$, where θ is the 2×2 null matrix. Show that $A^2 = \theta$.
- (19) Suppose G is an abelian group of order 105. Show that G is cyclic.

- (20) Let G be a group of order pq, with p and q distinct prime numbers. If there is an element g (not equal to the identity element) in the group G, with the property that gh = hg for all $h \in G$, then show that the group G is abelian.
- (21) Let $\mathbb{R}[x, y]$ be the ring of polynomials in two variables over the real numbers and let f(x) and g(y) be non-constant polynomials. Show that the ideal generated by f(x) and g(y) is not a principal ideal.
- (22) Find all the group homomorphisms from the group of rational numbers $(\mathbb{Q}, +)$ to the group of integers $(\mathbb{Z}, +)$.
- (23) If y_1 and y_2 are two linearly independent solutions of the homogeneous equation

$$y'' + P(x)y' + Q(x)y = 0$$

then show that

$$P(x) = -\frac{y_1 y_2'' - y_2 y_1''}{W(y_1, y_2)}$$

and

$$Q(x) = \frac{y_1' y_2'' - y_2' y_1''}{W(y_1, y_2)},$$

where W is the Wronskian.

(24) Solve

 $y' = (\cos x)(y - 2), \qquad y(0) = 1.$

Find the unique solution of the same equation with the initial condition y(0) = 2. Specify the interval on which the solution is defined in each case.