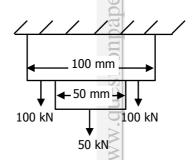
GATE question papers: Civil Engineering 2003 (CE)

Q.1 - 1.30 CARRY ONE MARK EACH.

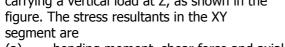
2 1 3 6 3 4 7 , the rank of the matrix is Given Matrix [A] = 2 1 0

(b)

(a)


- 2 (c)
- (d) 1
- 2. A box contains 10 screws, 3 of which are defective. Two screws are drawn at random with replacement. The probability that none of the two screws is defective will be
 - 100% (a)
- 50% (b)

3


- 49% (c)
- None of these
- If P, Q and R are three points having coordinates (3,-2,01), (1,3,4), (2,1,-2) in XYZ space, then the distance from point P to plane OQR (O being the origin of the coordinate system) is given by

3.

- A bar of varying square cross-section is loaded symmetrically as shown in the figure. Loads shown are placed on one of the axes of symmetry of cross-section. Ignoring self weight, the maximum tensile stress in N/mm² anywhere is
 - 16.0 (a)
- 20.0 (b)
- 25.0
- (d) 30.0

- 5. Muller Breslau principle in structural analysis is used for
 - drawing influence line diagram for any force function
 - (b) writing virtual work equation
 - super-position of load effects (c)
 - none of these (d)
- 6. The effective length of a column in a reinforced concrete building frame, as per IS: 456-2000, is independent of the
 - frame type i.e., braced (no sway) or un-braced (with sway) (a)
 - (b) span of the beam
 - (c) height of the column
 - (d) loads acting on the frame
- 7. A curved member with a straight vertical leg is carrying a vertical load at Z, as shown in the figure. The stress resultants in the XY

- bending moment, shear force and axial force (a)
- Bending moment and axial force only (b)
- (c) bending moment and shear force only
- (d) axial force only

8.		σ_{cbc} is the		ess in be	nding compre	ession in co			$80/$ (3 σ_{cbc}), when loes the above value	
	in/	(a) (c)	No compensation Partial compression	on	·	(b) (d)	Full compensat The two are ur			
9.	net.		design of lacing ing bar is	system f	or a built-up s	steel colum	n, the maximum	allowab	le slenderness ra	atio
	ers.	(a)	120	(b)	145	(c)	180	(d)	250	
10.	ape		of the following to the ridge?	elements	s of a pitched	roof indust	trial steel buildin	g primar	ily resists lateral	load
	onp	(a)	bracings	(b)	purlins	(c)	truss	(d)	columns	
11.	w.questi			balanced 1038			the tension rein flexure are respondence 0.002 and 0.00 0.002 and 0.00	ectively 18	nt (Fe-415 grade	and
12.	W W	The stif	fness K of a be	am defle	cting in a sym	metric mod	de, as shown in t	the figur	e, is	
	tp://x	(a)	EI L	_	K	rs.ne	К			
	ht	(b)	ZEI L		I=(ape	0=I			
		(c)	4EI L	 ⊲		13				
		(d)	6EI L		EI (Jniform				
13.		sand pa	articles is 2.65. I sible upward gra	For a des adient wi	sired factor of II be	safety of 3	against sand bo	oiling, the		f
		(a)	0.225	(b)	0.302	(c)	1.0	(d)	None of these	
14.		loads. I having consolid	ts final consolid negligible thicki dation settlemer	ation set ness is in nt of clay	tlement has b troduced at a layer will be	een estima depth of 1	ated to be 120 m .5m below the to	ım. If a t op surfac		
		(a)	60 mm	(b)	120 mm	(c)	240 mm	(d)	None of these	let.j
14.		loads. I having consolid	ts final consolid negligible thick dated settlemen	ation set ness is in t of clay	tlement has b troduced at a layer will be	een estima depth of 1	ited to be 120 m .5m below the to	nm. If a top surfac		
		(a)	60 mm	(b)	120mm	(c)	240 mm	(d)	None of these	duc
15.		the des		fety is 1.					on is 35 degrees page occurs at a	
		(a)	25°	(b)	23°	(c)	20°	(d)	13°	y. 9
16.			load intensity						settles by 15mm ent of a 1m squa	
		(a) (c)	less than 15 m 15.60 mm	m		(b) (e)	greater than 25 20.50	5 mm		ttp://

									Civil Engineering www.questionpa	
17.	kN/m ² a	at a poir		below a	and 4.0 m aw	ay from th	e load will be	9	al pressure int	ensity in
18.					13.2 nal flow, the sam function, u			(d) ined as φ =	0.132 : In(x²+y²). Wh	nich of
19. ers.met.in	(a)	_	-		tan ⁻¹ (y/x)	• •		(x) (d)	2 tan ⁻¹ (x/y)
http://www.questionpapers	the plat Column Colum P. Q. R. Colum 1. 2. 3. Codes:	te. For the series I and near series I and Shear series Increase remain series P	he lamir II. ary layer stress at re gradie ses in the ses in the sunchar Q 2 2 1	thickne the platent along e flow de e flow d nged R 3 2 1	dary layer for ss te. g the plate. lirection				eam velocity pa	
	(d)	2	1	3		tion				
20.	mass do in the n (a) Water i state do doubled	ensity 90 nodel sh 0.95 m s pumper awdowidd and th	00 kg/m hall be ³ /s. ed from h (X) in e steady	3. The h (b) a well ta an obse	o.100 m ³ /s. apping an uncryation well is rawdown in t	n the river (c) confined ac monitored he same o	is 10,000 m 0.105 m ³ / quifer at a ced. Subsequents	3/s. The cores. (d) ertain dischantly, the pure tell is found	ed in the mode responding dis 10.5 m ³ /s. arge rate and the mode to be more the	scharge he steady ge is
	(a) (b) (c) (d)	well los decreas nonline	sses	saturat	is disproporti ed thickness	pt		ised by		net.in/
22.	cm/hr c	occurs of ion rate smaller	ver the	soil for a e storm 2 cm/hr	n indefinite p has lasted fo	eriod. Ass	uming the su	urface draina I be	m of intensity age to be adeo	0.5
23.	is 25.92	2 cm. Th tary cha	ne cultur Innel sha In 2 cun	able cor all be de	iter, required nmand area f esigned for a	or a distrib	outary chann 2 cumecs	entire grow el is 100,00 n 20 cumecs	ving period (15 0 hectares. Th	http://www.ques.com

24.	The moisture content of soil in the root zone of an agricultural crop at certain stage is found to be 0.05. The field capacity of the soil is 0.15. The root zone depth is 1.1m. The consumptive use of crop
	at this stage is 2.5 mm/day and there is no precipitation during this period. Irrigation efficiency is
	65%. It is intended to raise the moisture content to the field capacity in 8 days through irrigation.
_ I	The necessary denth of irrigation is

- 115 mm
- (b) 169 mm
- (c) 200 mm
- (d) 285 mm
- The results of analysis of a raw water sample are given below

Turbidity 5 mg/1 рΗ 7.4 Fluorides $2.5 \, \text{mg}/1$ Total Hardness: 300 mg/1 Iron $3.0 \, \text{mg/1}$ MPN 50 per 100 ml

From the data given above, it can be inferred that water needs removal of

- Turbidity followed by disinfection
- Fluorides and Hardness (b)
- Iron, followed by disinfection (c)
- (D) Both (b) and (c)
- 26. Which of the following sewage treatment methods has inherent problem of odour, ponding, and fly nuisance?
 - (a) **UASB** system

(b) Activated sludge process

(c) Trickling filters

- (d) Stabilization ponds
- From amongst the following sewage treatment options, largest land requirements for a given 27. discharge will be needed for
 - (a) trickling filter

(b) anaerobic pond

oxidation ditch (c)

- (d) oxidation pond
- 28. Zero hardness of water is achieved by
 - lime soda process

- (b) excess lime treatment
- (c) iron exchange treatment
- (d) excess alum and lime treatment
- 29. Temperature stresses in concrete pavements may cause the slab to crack. If a slab cools uniformly then the crack will develop at the following locations of the slab
 - (a) at centre

near edges (b)

at corners (c)

- (d) both (b) and (c)
- 30. The speed and delay studies on a defined section of highway are conducted by
 - radar gun (a)

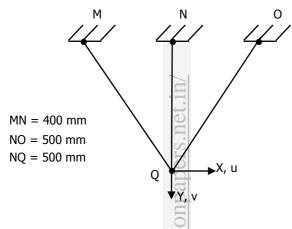
traffic counters (b)

(c) moving car method (d) enoscope

Q. 31-90 CARRY TWO MARKS EACH

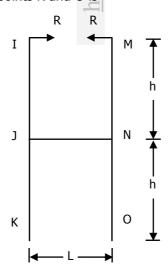
- If L defines the Laplace Transform of a function, L [sin (at)] will be equal to 31.
 - α / (s²-a²)
- (b)
- $a/(s^2+a^2)$
- (c) $s/(s^2+a^2)$
- 32. The Fourier series expansion of a symmetric and even function, f(x) where $f(x) = 1 + (2x/\pi), -\pi < x < 0$ and

$$= 1 - (2x/\pi), 0 < x < \pi$$

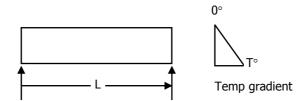

will be

$$EI\frac{d^2y}{dx^2} = -py$$

where y is the structural lateral deflection and EI is the flexural rigidity. The first critical load on column responsible for its buckling is given by


- (a) $\pi^2 EI/L^2$
- (b)
- $\sqrt{2}\pi^2$ EI/L²
- (c) $2\pi^2 EI/L^2$
- (d) $4\pi^2 EI/L^2$

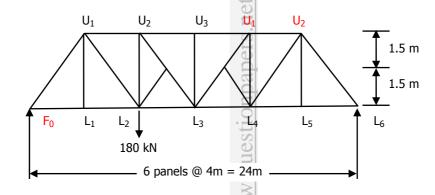
In a redundant joint model, three bar members are pin connected at Q as shown in the figure. Under some load placed at Q, the elongation of the members MQ and OQ are found to be 48 mm and 35 mm respectively. Then the horizontal displacement u and the vertical displacement v of the node Q, in mm, will be respectively.



- (a) -6.64 and 56.14
- (c) 0.0 and 59.41

- (b) 6.64 and 56.14
- (d) 59.41 and 0.0
- 35. Top ring beam of an Intze tank carries a hoop tension of 120 kN. The beam cross-section is 250 mm wide and 400 mm deep and it is reinforced with 4 bars of 20 mm diameter of Fe 415 grade. Modular ratio of the concrete is 10. The tensile stress in N/mm²in the concrete is
 - (a) 1.02
- (b) 1.07
- (c) 1.20
- (d) 1.32
- 36. A "H" shaped frame of uniform flexural rigidity EI is loaded as shown in the figure. The relative outward displacement between points K and O is
 - (a) $\frac{RLh^2}{EI}$
 - (b) $\frac{RL^2h}{EI}$
 - (c) $\frac{RLh^2}{3EI}$
 - (d) $\frac{RL^2h}{3EI}$

37. A simply supported beam of uniform rectangular cross-section of width b and depth h is subjected to linear temperature gradient, 0° at the top and T° at the bottom, as shown in the figure. The coefficient of linear expansion of the beam material is a. The resulting vertical deflection at the midspan of the beam is

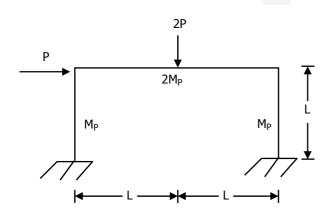


 $\frac{\alpha Th^2}{8L}$ upward (a)

(b)

 $\frac{\alpha Th^2}{8L}$ downward (c)

- $\frac{\alpha T L^2}{8h} \, downward$ (d)
- ttp://www.questionpapers.net.in A truss, as shown in the figure, is carrying 180 kN load at node L2. The force in the diagonal member M_2U_4 will be



100 kN tension (a)

100 kN compression (b)

80 kN tension (c)

- (d) 80 kN compression
- A steel portal frame has dimensions, plastic moment capacities and applied loads as shown in the 39. figure. The vertical load is always twice of the horizontal load. The collapse load P required for the development of a beam mechanism is

- (a) $3M_p/L$
- (b) $4M_p/L$
- (c) $6M_p/L$
- (d) $8M_p/L$

40. The state of two dimensional stress acting on a concrete lamina consists of a direct tensile stress, $\sigma_x = 1.5 \text{ N/mm}^2$, and shear stress $\iota = 1.20 \text{ N/mm}^2$, which cause cracking of concrete. Then the tensile strength of the concrete in N/mm² is

- (a) 1.5
- (b) 2.08
- (c) 2.17
- (d) 2.29

Group I contains some properties of concrete/cement and Group 2 contains list of some tests on concrete/cement. Match the property with the corresponding test.

Group I

- Ρ workability of concrete
- Q direct tensile strength of concrete
- R bond between concrete and steel
- S fineness of cement

Group II

- cylinder splitting test 1.
- 2. Vee-Bee test
- 3. surface area test
- 4 fineness modulus test
- 5. pull out test.

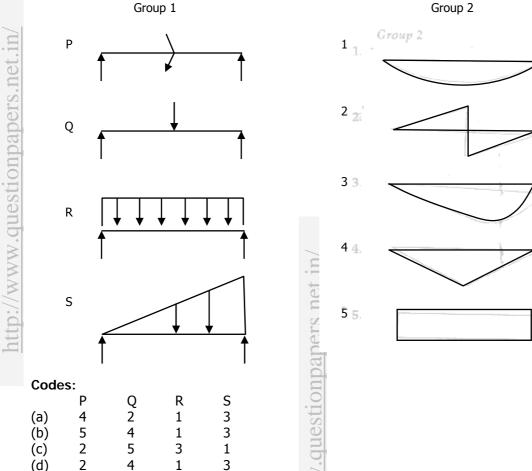
Codes:

	r	Q	T.	3
(a)	2	1	5	3
(b)	4	5	1	3
(a) (b) (c) (d)	2	1	5	4
(d)	2	5	1	4

42. Group I contains some elements in design of a simply supported plate girder and Group 2 gives some qualitative locations on the girder. Match the items of two lists as per good design practice and relevant codal provisions.

Group I

- Ρ flange splice
- Q web splice
- R bearing stiffeners
- S horizontal stiffener


Group II

- 1. at supports (minimum)
- 2. away from centre of span
- 3. away from support
- 4. in the middle of span
- 5. longitudinally somewhere in the compression flange

Codes:

	Ρ	Q	R	S
(a) (b) (c) (d)	2	3	1	5
(b)	4	2	1	3
(c)	3	4	2	1
(d)	1	5	2	3

- 43. A concrete column caries an axial load of 450 kN and a bending moment of 60 kM m at its base. An isolated footing of size 2m by 3m, with 3m side along the plane of the bending moment, is provided under the column. Centres of gravity of column and footing coincide. The net maximum and the minimum pressures in kN/m² on soil under the footing are respectively.
 - 95 and 55 (a)
- 95 and 75 (b)
- (c) 75 and 55
- (d)
 - 75 and 75

45. Compaction of an embankment is carried out in 500 mm thick layers. The rammer used for compaction has a foot area of 0.05 sq. m and the energy imparted in every drop of rammer is 400 Nm. Assuming 50% more energy in each pass over the compacted area due to overlap, the number of passes required to develop compactive energy equivalent to Indian Standard light compaction for each layer would be

(a) 10

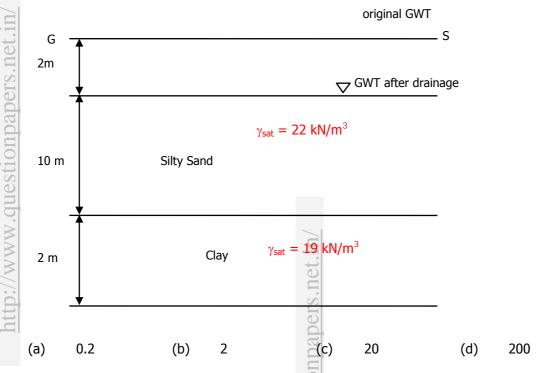
(b) 16

(c) 20

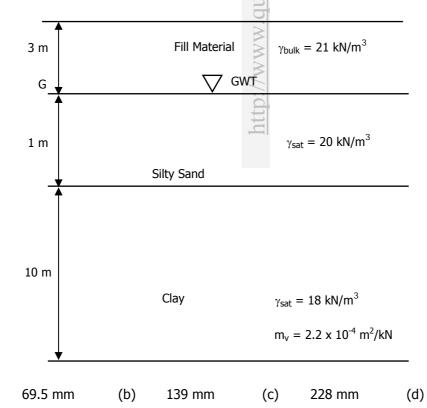
(d) 26

46. A braced cut, 5m wide and 7.5m deep is proposed in a cohesionless soil deposit having effective cohesion c'=0 and effective friction angle, $\phi'=36^{\circ}$. The first row of struts is to be installed at a depth of 0.5 m below ground surface and spacing between the struts should be 1.5m. If the horizontal spacing of struts is 3m and unit weight of the deposit is $20kN/m^3$, the maximum strut load will be

(a) 70.87 kN


(b) 98.72 kN

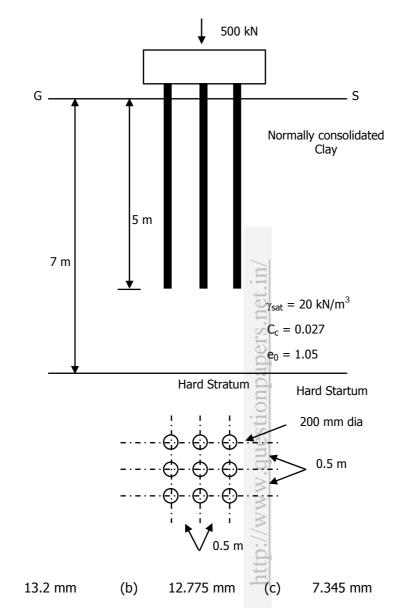
(c)


113.90 kN

(d)

151.86 kN

48. At a reclamation site for which the soil strata is shown in figure, a 3m thick layer of a fill material is to be laid instantaneously on the top surface. If the coefficient of volume compressibility, m_v for clay is 2.2×10^{-4} m²/kN, the consolidation settlement of the clay layer due to placing of fill material will be


(a)

278 mm

(d)

none of these

49. For the (3×3) pile group shown in the figure, the settlement of pile group, in a normally consolidated clay stratum having properties as shown in the figure, will be

50. Match the items of the two lists and select the correct answer.

List I (Boring Methods)

- Ρ **Auger Boring**
- Q Wash Boring
- R Percussion Drilling
- S **Rotary Drilling**

List II (Field Conditions)

- Below water table in all soil types except hard soils and rocks 1.
- 2. Large diameter boreholes over 150 mm in size
- 3. Explorations for shallow foundations and highways
- Bouldery and gravelly strata 4.

Codes:

(a)

- Ρ Q R S 3 1 2 (a) 4 3
- 2 (b) 1 4
- 2 3 4 1 (c) 4 (d) 3 1 2

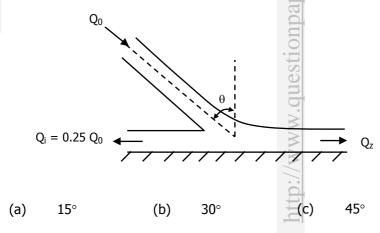
51. Match the items of List-I with List-II and select the correct answer.

List I

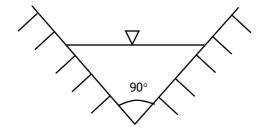
- P Modulus of subgrade reaction
- Q Relative density and strength
- R Skin friction and point bearing reistance
- S Elastic constants

List II

- 1. Cyclic pile load test
- 2. Pressure meter test
- 3. Plate load test


ww.questionpapers.net.in

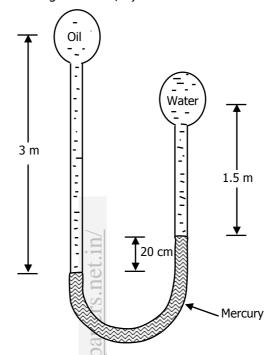
- 4. Standard penetration test
- 5. Dynamic cone penetration test


Codes:

	Р	Q	ĸ	5
(a)	1	3	К 2	5
(a) (b) (c)	1	Q 3 2 5	4	5 3 3
(c)	1 2	5	1	3
٦)	2	1	1	2

A horizontal jet strikes a frictionless vertical plate (the plan view is shown in the figure). It is then divided into two parts, as shown in the figure. If the impact loss can be neglected, what is the value of θ ?

53. A hydraulic jump takes place in a triangular channel of vertex angle 90° , as shown in figure. The discharge is $1\text{m}^3/\text{s}$ and the pre-jump depth is 0.5 m. What will be the post-jump? (Take $g = 9.81 \text{ m/s}^2$)



- (a) 0.57 m
- (b) 0.91 m
- (c) 1.02 m
- (d) 1.57 m

(d)

60°

Two pipelines, one carrying oil (mass density 900 kg/m³) and the other water, are connected to a manometer as shown in the figure. By what amount the pressure in the water pipe should be increased so that the mercury levels in both the limbs of the manometer become equal? (Mass density of mercury = $13,550 \text{ kg/m}^3$ and $q = 9.81 \text{ m/s}^2$)

(a) 24.7kPa

tp://www.questionpapers.net.in

(b) 26.5 kPa

26.7 kPa

(d) 28.9 kPa

55. A solids sphere (diameter 6 mm) is rising through oil (mass density 900 kg/m 3 , dynamic viscosity 0.7 kg/ms) at a constant velocity of 1 cm/s. What is the specific weight of the material from which the sphere is made? (Take $q = 9.81 \text{ m/s}^2$)

(c)

(a) 4.3 kN/m^3

(b) 5.3 kN/m^3

(c) 8.7 kN/m^3

(d) 12.3 kN/m^3

56. While applying the Rational formula for computing the design discharge, the rainfall duration is stipulated as the time of concentration because

(a) this leads to the largest possible rainfall intensity

(b) this leads to the smallest possible rainfall intensity

- (c) the time of concentration is the smallest rainfall duration for which the Rational formula is applicable
- (d) the time of concentration is the largest rainfall duration for which the Rational formula is applicable

57. While designing a hydraulic structure, the piezometric head at bottom of the floor is computed as 10m. The datum is 3m below floor bottom. The assured standing water depth above the floor is 2m. The specific gravity of the floor is computed as 10m. The datum is 3m below floor bottom. The assured standing water depth above the floor is 2m. The specific gravity of the floor material is 2.5. The floor thickness should be

(a) 2.00 m

(b) 3.33 m

(c) 4.40 m

(d) 6.00 m

58. The plan area of a reservoir is 1 km². The water level in the reservoir is observed to decline by 20 cm in a certain period. During this period the reservoir receives a surface inflow of 10 hectare-meters, and 20 hectare-meters are abstracted from the reservoir for irrigation and power. The pan evaporation and rainfall recorded during the same period at a near by meteorological station are 12 cm and 3 cm respectively. The calibrated pan factor is 0.7. The seepage has from the reservoir during this period in hectare-meters is

(a) 0.0

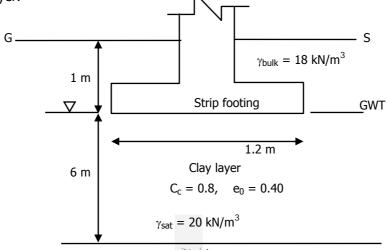
(b) 1.0

(c) 2.4

(d) 4.6

													npapers.net.
59		Match t	he follov	_									
			Group										
		Р		intensit	У								
		Q		excess	_								
		R		Averag	ing								
	t.ii	S	Mass cu	ırve									
	ww.questionpapers.net.		Group										
	S	1.	Isohyet										
	G	2.		itive rair	nfall								
	8	3.	Hyetog										
	du	4.	Direct r	unon ny	/drograp	n							
	101		Codes		_	•							
	S		Р	Q	R	S							
	19	(a)	1	3	2	4							
	5	(b)	3	4	1	2							
	\geq	(c)	1 3	2 4	4 2	3 1							
		(d)	3	7	2	1	iii						
60						from Aeration							
				sample.	The test	yielded a set	tled vo	olume	of 200 m	ıl. The v	/alue	of Sludge \	Volume
	5	Index s			4.5	24.2	2					0=4	
	ht	(a)	14.0		(b)	34.2	(c)) .	71.4		(d)	271	
61		Results	of a wa	ter samı	ple analy	sis are as foll	ows:-						
		Cation			Conce	ntration (mg/	I) 🗐		Equival	ent Wei	ight		
		Na ⁺			40				23				
		Mg ⁺²			10		S		12.2				
		Ca ⁺²			55		2		20				
		-K ⁺			2		0		39				_
			uivalent	weight		₃ = 50 mg/me	ea).>		00				
						n mg/1 as Ca							
		(a)	44.8		(b)	89.5	(c)) :	179		(d)	358	
62		An idoa	l horizor	atal flow	cotting	basin is 3m d	oon ha	wina c	urfaco a	roa 000	m ² \A	lator flows	at the rate
02	•					iture 20°C (m							
		to be va	alid the	nronort	ion (ner	centage) of sp	herica	l sand	narticles	: 10 00 i	mm ir	n diameter	with specific
					or (pero) I ICI ICU	Jana	particies	(0.01		i didirictei	With Specific
		(a)	32.5	iac wiii i	(b)	67	(c)) (37.5		(d)	95.5	
													let
63		Match t	he follow	_					Croup I				
		(Charac	Group				/۸		Group I				
			teristics dischar				(A	iiowab	le limit,	1119/1)			De
			and wate										a
		P	BOD ₅	213)					1. 50				
		Q	COD						2. 30				0
		R	Oil and	Grease					3. 20				-
		S			ed Solids				4. 10				0
		J	. ota. o	аоролис					5. 5				
									5. 3				ttp://www.questionpapers.net.i
		Codes	_	_	_	_							
			Р	Q	R	S							
		(a)	2	5	4	2							
		(b)	4	1	6	4							
		(c)	3	1	4	2							
		(d)	2	1	6	3							

64. Match the following:											
					of wat	er impurity))				
		Р	Hardne								
		Q			from sea						
		R	Residua	al MPN fi	om filte	rs					
	www.questionpapers.net.in	S	Turbidit	У							
	.ne	1		II (Met		treatment)					
	IS	1. 2.	Chlorina		15						
	9	3.		Treatme	nt						
	3	3. 4.			d Floccul	ation					
	du	5.				n and Filtratio	on				
	tio		Codes:								
	0		Р	Q	R	S					
		(a)	1	2	4	5					
	9	(b)	3	2	2	4					
	\geq	(c)	3 2	1	3	5					
	\geq	(d)	3	1	2	5	-=				
							et				
65.	•							If the maximum			
	5				of later	al friction is 0.	.15, the ru	ling minimum ra	dius of h	orizontal curve	on the
	=	-	y should	be			ē				
		(a)	260 m		(b)	315 m	(c)	380 m	(d)	410 m	
66.		Λ traffic	ctroam	in a nar	ticular d	irection of a t	wo lane ro	ad is moving wit	h a cons	stant speed of 5	0
00.	•							ngitudinal distan			
		vehicles		average	ileauwa	y 01 .32 Secon	ius. The lo	ngituumai uistai	ice betwe	een two consect	Juve
		(a)	30 m		(b)	35 m	S (c)	38 m	(d)	42 m	
		(u)	30 111		(5)	33 III		50 III	(u)	12 111	
67.		In the N	Marshall	method	of mix c	lesian, the co	arse aggre	gates, fine aggr	egates, f	iller and bitume	n,
								nd 1.02, are mix			
			gravity					,		,	,
		(a)	2.36		(b)	2.40	(c)	2.44	(d)	2.50	
							• •				
68.		•				•		ate on soil subgr	•		of 2.5
				ess of 8				city of the subgr			
		(a)	141.6		(b)	154.6	(c)	160.0	(d)	185.4	
60		Calumn	T holow	aivos s	list of pl	hysical proper	tion of and	waastaa whish s	ممالما لمم	datarminad ta	
69.	•							regates which s			
						uon. Column l	ii gives a i	ist of laboratory	tests wi	iich are conduce	id to
		determi	ine these Colum		ues.	Colu	ımn II				
		P Hardr									7
		Q Poros				 Water ads Impact tes 					Q
		R Tougl				3. Soundness					2
		S Durat				4. Abrasion t					
				llowing r	matchec	is correct?	.CSL				
		Codes:		ilowing i	Hatthes	is correct:					÷
		ooues.	P	Q	R	S					www.questionpapers
		(a)	1	2	3	4					
		(a) (b)	4	1	2	3):
		(c)	3	4	1	2					
		(d)	2	3	4	1					
		(u)	_	J	Т	1					
											1


A beam 10m pa	PQRS is	18m long and i	s simply S are 3m	supported at p and 5m respe	oints Q a	train of two poir	nangs PC	wers. Q and RS are 3m an of 150 kN and 100	nd
70. Tet. III	The ma (a)	ximum sagging 500 kNm	moment (b)	under the 150 45 kNm	kN load (c)	anywhere is 400 kNm	(d)	375 kNm	
71.			he loads	, the maximum	and the	minimum reaction	ns at su	pport R, in kN, are	
aper	respecti (a)	300 and -30	(b)	300 and -25	(c)	225 and -30	(d)	225 and -25	
72. uoij	The ma (a)	ximum hogging 300 kNm	moment (b)	in the beam a 450 kNm	nywhere (c)	is 500 kNm	(d)	750 kNm	
						nd choose corr			
3m. It is gradual effective strength	s subject ly increa e cover on and the	ted to two point sed simultaneou of 40 mm bottor e bending tensilo	loads P Isly. Bea In face ai e strengt	of equal magni m is reinforced nd nominal she th of the concre	tude plac with 2 H ar reinfor ete are 20	ed at middle thir YSD bars of 16 n cement. The cha 0.0 N/mm ² and 2	d points nm diam racterist .2N/mm	² respectively.	<u>)</u>
73.		g the presence o ill develop in the		n reinforcemen	t, find the	e value of load P	in kN wh	nen the first flexure	:
	(a)	4.5	(b)	5.0	(c)	6.6	(d)	7.5	
74.	The the (a)	oretical failure lo 23.7 kN	oad of th (b)	ne beam for atta 25.6 kN	ainment (of limit state of co 28.7 kN	ollapse ii (d)	n flexure is 31.6 kN	
	Data fo	or Q.75-76 are	given b	oelow. Solve t	he prob	lems and choo	se corre	ect answers.	
	connect	ed, one each or	either s	side of a 10mm	thick gus		mm diar	he two angles are meter rivets arrange n ² .	ed
75.	Maximu (a)	m tensile stress 93.6	in the ti (b)		(c)	77.2	(d)	66.0	
76.	Minimur (a)	m number of riv	ets requi	ired at each en	d is (c)	4	(d)	5	
Data fa								•	
A canal	having s	side slopes 1:1 is	s propos	ed to be constr	ucted in	nd choose corre a cohesive soil to = 1.0, Gs = 2.65.	a depth	of 10 m below the	
77.		r's Stability Num n against failure					tor of sa	ifety with respect to	OCHOC
	(a)	3.7	(b)	1.85	(c)	1.0	(d)	None of these	
78.								ber for the reduced ure of bank slopes	nesn
	(a)	1.85	(b)	1.18	(c)	0.84	(d)	0.53).
								1 T T T T T T T T T T T T T T T T T T T	nttp://ww

Data for Q.79-80 are given below. Solve the problems and choose correct answers.

Figure shows the geometry of a strip footing supporting the load bearing walls of a three storied building and

the properties of clay layer.

w.questionpapers.net.

Hard stratum

- 79. If the pressure acting on the footing is 40 kPa, the consolidation settlement of the footing will be (a) 0.89 mm (b) 8.9 mm (c) 89.0 mm (d) None of these
- 80. If the elastic modulus and the Poisson's ratio of the clay layer are respectively 50×10^3 kPa and 0.4 and if the influence factor for the strip footing is 1.75, the elastic settlement of the footing will be

(a) 0.41 mm (b)

- (b) 1.41 mm
- (c) 14.1 mm
- (d) None of these

Data for Q. 81-82 are given below. Solve the problems and choose correct answers.

A very wide rectangular channel carries a discharge of $8m^3/s$ per m width. The channel has a bed slope of 0.004 and Manning's roughness coefficient, n = 0.015. At a certain section of the channel, the flow depth is 1m.

- 81. What Gradually Varied Flow profile exists at this section?
 - (a) M_2
- (b) M_3
- (c) S_2
- (d) S_3
- 82. At what distance from this section the flow depth will be 0.9 m? (Use the direct step method employing a single step)
 - (a) 65 m downstream

(b) 50 m downstream

(c) 50 m downstream

(d) 65 m downstream

Data for Q.83-84 are given below. Solve the problems and choose correct answers.

A pipeline (diameter 0.3 m, length 3 km) carries water from point P to point R (see figure). The piezometric heads at P and R are to be maintained at 100 m and 80 m, respectively. To increase the discharge, a second pipe is added in parallel to the existing pipe from Q to R. The length of the additional pipe is also 2 km. Assume the friction factor, f = 0.04 for all pipes and ignore minor losses.

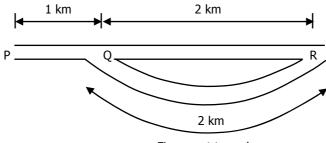


Figure not to scale

- 83. What is the increase in discharge if the additional pipe has same diameter (0.3 m)?
 - (a) 0%
- (b) 33%
- (c) 41%
- (d) (

84.		e is no restriction narge theoretical 0%						ould be th	ne maximum incre 73%	ease
An ave unit hy in six h	rage rair drograpl ours and	h (unit depth = 1	curs ove L cm, du rly from :	r a catch ration = 30 to 0 c	ment do 6 hours cumecs	uring a p s) of the in the ne	period of 12 hou catchment rises ext 12 hours. φ i	rs with u linearly	wers. niform intensity. ⁻ from 0 to 30 cum the catchment is	
85. edu	Peak di (a)	ischarge of the ro 150 cumecs	esulting (b)	direct ru 225 cur		drograph (c)	shall be 230 cumecs	(d)	360 cumecs	
estioi-98	Area of (a)	the catchment i 97.20	n hectar (b)	es is 270		(c)	9720	(d)	2700	
A conv	entional bically d 1. 2. 3.	-88 are given be Activated Sludge igested sludge of Raw Sewage Primary Setting Excess Activated (80% Volatile of Anaerobic Dige	e Plant tr n relative d Sludge f total)	eating 1 ely imper	000 m ³ /rvious fa : SS = BOD = sludge : SS-50 0.4 g V : VSS r Concer	d of mu armland. 225 mg, 190 mg returned % remo SS prod educed otration -	nicipal waste wa	ater dispo ng data) ated emoval		
07	5.	Application on t			Gravity : 2 m ³ /	ha.d	tod (100/d 1/CC)	مط العطم		
87.	(a)	olatile suspended 133	(b)	.o be ana 168	aerobica	(c)	233	(d)	245	
88.	Area re (a)	equirements (ha) 2.95	for disp (b)	osal of th 1.95	he sludg	ge on far (c)	mland shall be 0.95	(d)	0.55	
A wate	r treatm	-90 are given k ent plant treating alkalinity as CaCo	g 10 mld	of wate	r require	es 20mg	/I of filter Alum,	Al ₂ (SO ₂	vers. $_{1}$) ₃ . 18 H_{2} O. The w	
89.	Total a (a)	lkalinity requiren 180	nent (10 ⁶ (b)	⁵ mg per 120	day as	CaCO₃) (c)	matching filter A 90	Alum, sha (d)	all be 60	net.ir
90.	Quantil (a)	ty of Quick Lime 2132	required (b)	(10 ⁶ mg 3000	g per ye	ar as Ca (c)	O) shall be 4132	(d)	6132	vw.questionpapers.net.ir

Answer	Key	Civil	Engineering	GATE 200	13
---------------	-----	-------	--------------------	-----------------	----

1 EC	2	d	3	а	4	С	5	а	6	b	7	d	8	С	9	b	10	а
11 X a	12	b	13	С	14	b	15	а	16	b	17	d	18	С	19	b	20	b
21 c	22	b	23	d	24	С	25	d	26	С	27	d	28	С	29	а	30	С
31 ISO III b	32	b	33	а	34	b	35	b	36	а	37	d	38	а	39	а	40	С
41 M. c	42	а	43	а	44	d	45	b	46	С	47	С	48	b	49	а	50	а
51 d	52	b	53	d	54	b	55	d	56	а	57	а	58	d	59	b	60	а
61 C	62	С	63	d	64	d	65	b	66	b	67	С	68	а	69	b	70	С
71 a	72	С	73	С	74	d	75	а	76	С	77	b	78	d	79	С	80	а
81 d	82	b	83	С	84	С	85	b	86	С	87	а	88	d	89	С	90	d