(Paper) BEL Placement Paper (Technical- Electronics V)

Paper: BEL Placement Paper (Technical- Electronics V)

1. VSWR on a transmission line is always
2. Equal to 1
3. Equal to 0
4. Less than 1
5. Greater than 1
6. In a amplitude modulated wave, the value of Vmax is 10V and Vmin is 5V. The \% modulation in this case is:
7. 2% b. 33.3% c. 50% d. 100%
8. The signal to noise ratio at the input of an amplifier can be improved:
9. By decrease the source impedance or resistance
10. By increasing the source impedance
11. By matching the source impedance with the input impedance of the amplifier
12. None of these
13. If the bandwidth of an amplifier is reduced, the thermal noise in the amplifier will:
14. Increase
15. Decrease
16. Not to be affected at all
17. Become random in nature
18. For the distortion to be minimum in a transmission line at audio frequencies, the condition is
19. $\mathrm{L}=\mathrm{CR} / \mathrm{G}$
20. $\mathrm{L}=\mathrm{GR} / \mathrm{C}$
21. $L G=R$
22. $L R=G$
23. When electromagnetic waves are propagated in a waveguide
24. They travel along the broader walls of the waveguide
25. They travel through the dielectric without touching the wall
26. They are reflected from the walls but they do not travel along them
27. None of these
28. Communication between satellite and ground station is through
29. Tropospheric scatter
30. Ground wave
31. Sky wave
32. Line of sight propagation
33. A mast antenna is used mainly for
34. UHF
35. Short wave
36. Medium wave
37. VHF
38. A crystal which has a sensitivity of -55 dBm with 1 MHz BW amplifier will have a sensitivity at 4 MHz BW amplifier equal to:
39. -55 dBm b. $-58 \mathrm{dBm} \mathrm{c} .-52 \mathrm{dBm} \mathrm{d} .-60 \mathrm{dBm}$
40. Electromagnetic waves are refracted when they
41. Pass into a medium of different dielectric constant
42. Are polarized at right angles to the direction of
propagation
43. Encounter a perfectly conducting surface
44. Pass through a small slot in a conducting medium 11. An aerial is fed from an amplitude modulation amplifier. Both the modulating voltage and modulated voltage are sinusoidal. The aerial current (rms) before modulation is 5 A and it increases to 5.8A after modulation. The percentage of modulation index will be
45. 88% b. 80% c. 81.21% d. 83.14%
46. In a frequency demodulation, Foster-Seeley
discriminator uses a
47. Single tuned circuit
48. Double tuned circuit in which both the primary and secondary are tuned to the same frequency
49. Double tuned circuit in which both the primary and secondary are tuned to to different frequencies
50. Combination of two transistors in push-pull operation 13. The wavelength of an electromagnetic wave in wave guide 1. Is directly proportional to the phase velocity
51. Is inversely proportional to the phase velocity
52. Is greater than that in free space
53. Depends only on the wave guide dimensions and the free space wavelength
54. The scale used for moving coil meter is
55. Non-linear scale
56. Linear scale
57. A square scale
58. A log scale
59. To double the circuit range of a 50 mA , 2000 W meter movement, the shunt resistance requires is
60. 40 W b. 50W c. 2000W d. 25KW
61. A voltmeter utilizes a 20 mA meter movement. The sensitivity of the voltmeter is
62. 50 meg ohms per volt
63. 20 K ohms per volt
64. 50 kilo ohms per volt
65. 20 meg ohms per volt
66. A transformer, with a 20 : 1 voltage step-down ratio has 6 V across 0.6 ohm in the secondary, then $I s$ and $I p$ given by
67. 10A, 5A
68. 5A, 10A
69. 10A, 0.5 A
70. 1A, 0.5A
71. The temperature coefficient of resistance of a resistor is
72. Negative
73. Positive
74. Zero
75. Infinity
76. To prevent loading of the circuit under test, the input impedance of the oscilloscope
77. Be low
78. Be high
79. Capacitive
80. Inductive
81. If the retrace is visible on the CRT display, then the
trouble may be that
82. The fly back time of the time base saw tooth wave is not zero
83. The blanking control is not set properly
84. There is loss of SYNC signal
85. The intensity is too high
86. The lissajous pattern on CRO for two sinusoidal of
frequency ratio 1 : 2 differing in phase by 90 degrees, is
87. A straight line
88. A circle
89. An ellipse
90. An eight-shaped
91. When an electron starts from rest under the influence of electric and magnetic fields perpendicular to each other, the path traversed by it will be
92. Ellipse
93. A parabola
94. Straight line
95. A cycloid
96. Frequency multipliers are usually
97. Class A amplifiers
98. Class B amplifiers
99. Class C amplifiers
100. Class AB amplifiers
101. The feedback network of a phase shift oscillator is usually consists of
102. RC circuit
103. RL circuit
104. LC circuit
105. C alone
106. Common base amplifier is most suitable for use in
107. Very high frequency circuits
108. Low frequency circuits
109. Medium frequency circuits
110. Low current circuits
111. If two amplifiers having identical bandwidth are cascaded, then the bandwidth of the resulting amplifier will be
112. Less than that of each stage
113. Greater than that of each stage
114. Same as that of each stage
115. Double of each stage
116. Which one of the following amplifier has largest bandwidth
117. RC coupled amplifier
118. Difference amplifier
119. Transformer coupled amplifier
120. Direct coupled amplifier
121. In an amplifier, the emitter resistance by passed by a capacitor
122. Reduces the voltage gain
123. Increases the voltage gain
124. Causes thermal run away
125. None of these
126. The term free running is usually associated with
127. Bistable multivibrator
128. Astable multivibrator
129. Monostable multivibrator
130. None of these
131. The signal fed at the input of an ideal push-pull
amplifier has frequency components 150 Hz ' $300 \mathrm{~Hz}, 450 \mathrm{~Hz}$ and
600 Hz . The output signal will contain
132. Only 150 Hz frequency component
133. Only 150 Hz and 450 Hz frequency component
134. Only 300 Hz and 600 Hz frequency components
135. All the frequency components
136. For which of the following configuration [s] does the input resistance of the amplifier depend strongly on the load resistance
137. CE b. CC c. CB d. $C E$ and $C B$
138. An important advantage of the RC coupling scheme is
139. Economy
140. Excellent frequency reponse
141. High efficiency
142. Good impedance matching
143. The AC input to transistor oscillator is obtained from
144. The previous stage
145. A signal generator
146. DC power source
147. Its own internal circuit
148. The low frequency cut-off in an amplifier is due to
149. Only coupling capacitor
150. Only bypass capacitor
151. Both coupling and bypass capacitors
152. The internal transistor junction capacitances
153. In a half-wave rectifier the peak value of AC voltage across the secondary of the transformer is $20 / 2 \mathrm{~V}$. If no filter circuit is used, the maximum DC voltage across the load will be
154. 28.28 V b. 20 V c. 14.14 V d. None of these
155. Heat sinks ate used in a transistor working as power
amplifier so as to
156. Increase the output power
157. Reduce the heat losses in toe transistors
158. Increase the voltage gain of the amplifier
159. Increase the collector dissipation rating of the transistors
160. In a power amplifier, the output power is proportional
to
161. Vi b. Vi2 c. Vi3 d. Ö Vi
162. At half power frequencies the reduction in voltage gain of an amplifier equals
163. 6 dB b. 2 dB c. 3 dB d. 4 dB
164. the frequency of the ripple voltage at the output of a bridge rectifier operating from a 50 Hz supply is
165. 25 Hz b. $50 \mathrm{~Hz} \mathrm{c}$.100 Hz d. 200 Hz
166. Darlington pair is used for
167. High current gain
168. High power gain
169. High frequency operation
170. Low distortion
171. The function of a bleeder resistor in a power supply is
172. Same as that of a load resistor
173. To ensure a minimum current drain in the circuit
174. To increase the output current
175. To increase the output DC voltage
176. A JFET has a potential divider bias arrangement. By
mistake the resistor between the gap and the power supply
terminal is removed. The JFET will
177. Continue to work as an amplifier
178. Have a forward bias gate with respect to source
179. Not work as an amplifier but will work as a switch
180. Immediately burn out
181. The ripple factor of half-wave rectifier is
182. 0.482 b .1 .11 c .1 .21 d .1 .57
183. In the high frequency region of an RC coupled amplifier the circuit behave like a
184. Differentiator
185. A current amplifier
186. Low pass filter
187. High pass filter
188. Astable multivibrator can be used as
189. Squaring circuit
190. Comparator circuit
191. Voltage to frequency converter
192. Frequency of voltage converter
193. If the gain of the amplifier as A and the voltage feed back is fraction B of the amplifier output voltage, the condition for maintenance of oscillation is
194. $\mathrm{AB}=11800$
195. $A B=$ infinity
196. $\mathrm{AB}=100$
197. $A B \ll 1$
198. Nominal gain of an amplifier is 240. The noise level in the output without feed back is 300 mV . If a feed back Beta $=1 / 60$ used, the noise level in the output will be
1.1 .66 mV b. 2.4 mV c. 4 mV d .20 mV
199. A zener diode is primarily used for
200. Rectification
201. Producing constant current
202. Producing constant voltage
203. Reverse bias
204. Cross over distortion is eliminated in a push-pull
amplifier by
205. Using a transformer with a large step-up ratio
206. Using a transformer with a large step-down ratio
207. Providing a small forward bias to the transistors
208. Supplying both transistors with inphase signals
209. When a PNP transistor is saturated
210. Its base, emitter, and collector are all essentially at the same potential
211. Its emitter is at higher potential than the collector
212. Its collector is at higher potential than both base \&
emitter
213. None
214. For a RC high pass circuit
215. $\mathrm{RC} \ll \mathrm{t}$
216. $\mathrm{RC} \gg \mathrm{t}$
217. $R C=t$
218. None
219. An inverter is an equipment for transforming
220. $A C$ to $D C$
221. AC to AC
222. DC to DC
223. DC to AC
224. Suppose you wish to amplify the potential difference between two points in a circuit when neither of these points is grounded. Which one the following will you prefer?
225. RC coupled amplifier
226. Transformer coupled amplifier
227. Difference amplifier
228. Direct coupled amplifier
229. In an emitter follower, the output voltage is
230. 1800 out of phase from the input voltage
231. 900 out of phase from the input voltage
232. in phase with the input voltage
233. None
234. A silicon controlled rectifier can be considered to be:
235. Two pnp transistor connected back to back
236. Two npn transistor connected back to back
237. One npn and one pnp transistor connected back to back
238. Two zener diodes connected back to back
239. A rf signal contains three frequency components 870
$\mathrm{KHz}, 875 \mathrm{KHz} 880 \mathrm{KHz}$. This signal needs to be amplified.
The amplifier used should be
240. Audio frequency amplifier
241. Wide band amplifier
242. Push pull amplifier
243. None
244. In the emitter follower circuit
245. The output current and voltage are inphase with the input current and voltage respectively
246. The input and output impedances are equal
247. There is current series negative feedback
248. The output impedance is much higher than the input impedance
249. The frequency response of a system is the range of frequencies between the upper and lower
250. 1 dB points
251. 6 dB points
252. 3 dB points
253. None
254. In a class C amplifier the output current is zero for
255. Half cycle
256. Full cycle
257. Less than half cycle
258. More than half cycle
259. When RL [load resistance] equals the internal
resistance of a generator, which of the following is
maximum:
260. Power in RL
261. Current through RL
262. Voltage across RL
263. Efficiency of the circuit
264. negative feedback in an amplifier results in:
265. increased gain and increased bandwidth
266. increased gain and reduced bandwidth
267. reduced gain and increased bandwidth
268. reduced gain and reduced bandwidth
269. A class B push-pull amplifier suffers from
270. Cross-over distortion
271. Excessive harmonic distortion
272. Inter modulation distortion
273. None
274. An oscillator of the LC type that has split capacitor
in the tank circuit is
275. Hartely oscillator
276. Wein bridge oscillator
277. Colpitts oscillator
278. None
279. Clamping circuits are also known as
280. AC restorer
281. DC restorer
282. Voltage to frequency converter
283. None
284. Which of the following has the greater mobility
285. Positive ion
286. Negative ion
287. Electrons
288. Holes
289. An N type semiconductor as a whole is
290. Positively charged
291. Electrically neutral
292. Negatively charged
293. None
294. In a semiconductor, the forbidden energy gap is of the order
295. 1 ev b. 6 ev c. 7 ev d .0 .1 ev
296. In LED, light is emitted because
297. Recombination of charges take place
298. We make the light fall on LED
299. Diode emits light when heated
300. None
301. UJT is also called
302. A voltage controlled device
303. A current controlled device
304. A relaxation oscillator
305. None
306. The transistor configuration which provides higher output impedance is
307. CC b. CB c. CE d. None
308. Tunnel diodes are fabricated from
309. Silicon
310. Germanium
311. Either silicon or germanium
312. Either germanium or gallium
313. N channel FETs are superior to P channel FETs because
314. They have a higher input impedance
315. They have a high switching time
316. They consume less power
317. Mobility of electrons is greater than that of holes
318. Diac is a solid state device which works as a
319. 2 terminal bidirectional switch
320. 2 terminal unilateral switch
321. 3 terminal bidirectional switch
322. None
323. Triac is a solid device which works as a
324. 2 terminal bidirectional switch
325. 3 terminal bidirectional switch
326. 4 terminal bidirectional switch
327. 2 terminal unilateral switch
328. Compared to a CB amplifier, a CE amplifier has
329. Lower input resistance
330. Higher output resistance
331. Lower current amplification
332. Higher current amplification
333. The input and output signals of a common emitter
amplifier are:
334. Always equal
335. Out of phase
336. In phase
337. Always negative
338. The operation of a JEET involves
339. A flow of minority carriers
340. A flow of majority carriers
341. Recombination
342. Negative resistance
343. Solar cell is an example of a
344. Photo conductive device
345. Photo emissive device
346. Photo voltage device
347. None
348. Bretters and bolometers are used in the measurement of
349. Microwave power
350. VSWR
351. Transmission losses
352. None
353. A klystron operates on the principle of
354. Velocity modulation
355. Amplitude modulation
356. Pulse modulation
357. Frequency modulation
358. The unit of the amplification factor of a triode is
359. Decibels
360. Volt
361. Neper
362. None
363. A change in base current from 30 to 40 mA changes the collector current from 500 to 900 mA . The B factor for this power transistor equals
364. 900 b. 500 c. 3 d. 40
365. The field effect transistor can be used as
366. Variable capacitance
367. A constant voltage source
368. A variable resistance
369. A constant current source
370. Why NPN transistor are preferred over PNP transistor
371. NPN transistor have low heat dissipation
372. NPN transistor can handle large power
373. NPN transistor are cheap and easily available
374. None
375. The germanium transistors are seldom used above 1. 600 C b. 750 C c. 1250 C d. 1750 C
376. In a FET the drain voltage above which there is no
increase in the drain current is called
377. Pick off voltage
378. Critical voltage
379. Pinch off voltage
380. Break down voltage
381. A reflex klystron has
382. Only one cavity working both as the buncher \& the catcher
383. Two cavities one for buncher and one for the catcher
384. Three cavities, two for buncher and one for catcher
385. No cavity at all
386. Bipolar junction transistors are seldom used as switching devices because
387. BJTs are not economical fro using as switching devices
388. They can handle only high voltage but not high currents
389. They need separate circuits when used as switching device
390. Of slow response and inability to withstand high voltage 89. The voltage at which the electron flow starts from the anode is called
391. Break down voltage
392. Peak inverse voltage
393. Peak voltage
394. Pinch off voltage
395. The heater filament of a vacuum tube is generally supplied with AC voltage (and not DC voltage) for heating because
396. It results in a uniform heating of filament so that the electron emission also uniform
397. It is very easy to obtain AC voltage from AC power mains
398. The DC voltage that would be required for heating has
much greater magnitude than the AC voltage
399. When DC is used for heating, a different type of
filament is required which very expensive
400. The dopant used for P type semiconductor is
401. Phosphorous
402. Boron
403. Carbon
404. Sodium
405. An example of negative resistance characteristic device 1. BJT b. MOSFET c. UJT d. PINdiode
406. The average DC voltage obtained from a bridge rectifier with a sine wave input V sin wt is
407. $\mathrm{V} / 2 \mathrm{~b} .2 \mathrm{~V}$ c. 4 V d. V
408. The maximum theoretical efficiency of a class B
amplifier is
409. About 20\%
410. About 50%
411. About 75\%
412. 100%
413. A cascade amplifier is
414. A CE amplifier followed by CC amplifier
415. A CE amplifier followed by CB amplifier
416. A CC amplifier followed by CB amplifier
417. A CB amplifier followed by CE amplifier 96. Toggle switches can be debounced using
418. Astable multivibrator
419. Shift register
420. RS flip flop
421. None
422. A band pass filter has a centre frequency at 5 KHz . The 3 dB cut off frequencies are 4.5 KHz and 5.5 KHz . The Q factor of the filter is
423. 5 b. 0.2 c. 5.2 d .0 .45
424. The domestic buzzer makes use of
425. Hall effect
426. Tunneling effect
427. Natural resonance
428. Piezoelectric effect
429. The device which uses avalanche breakdown is
430. PIN diode
431. Zener diode
432. Impart diode
433. GUNN diode
434. The correct relation between Alpha and Beta of a transistor is
435. $\mathrm{a} / \mathrm{b}-1 \mathrm{~b} . \mathrm{b}=\mathrm{a}-1 \mathrm{c} \cdot \mathrm{b}=\mathrm{a} / 1-\mathrm{a} \mathrm{d} \cdot \mathrm{a}=\mathrm{b}+1 / \mathrm{b}$

Answer

1. d
2. b
3. a
4. b
5. a
6. b
7. d
8. C
9. C
10. a
11. d
12. C
13. c
14. b
15. C
16. C
17. C
18. a
19. b
20. d
21. d
22. d
23. C
24. a
25. a
26. b
27. d
28. d
29. b
30. d
31. b
32. a
33. d
34. C
35. d
36. d
37. b
38. a
39. C
40. a
41. b
42. C
43. c
44. C
45. C
46. C
47. d
48. C
49. C
50. a
51. a
52. d
53. C
54. C
55. C
56. d
57. C
58. C
59. C
60. a
61. C
62. a
63. C
64. b
65. C
66. b
67. a
68. a
69. a
70. b
71. d
72. d
73. a
74. b
75. d
76. b

77 . b
78. C
79. a
80. a
81. d
82. d
83. C
84. d
85. b
86. C
87. a
88. d
89. b
90. b
91. b
92. C
93. d
94. b
95. b
96. c
97. a
98. d
99. C

100 . c

