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Executive Summary 
 

Electronic Design Automation (EDA) has been an immensely successful field, helping to 
manage the exponential increase in our capability to implement integrated circuits that 
currently incorporate billions of transistors. At the same time, it fostered and used theories in 
computation and modeling, successfully combining theory and practice. EDA has completely 
transformed the way that electronic engineers design and manufacture integrated circuits. It 
was one of the earliest to engage in inter-disciplinary collaboration, where the computer 
scientists and engineers in EDA successfully collaborated with electrical engineers, physicists, 
chemists, theoretical computer scientists, applied mathematics and optimization experts, and 
application domain specialists. 

This workshop was organized to 1) reflect on the success of EDA to see if its practice can 
influence other fields of computer science, and if its methodology can be applied to other 
application domains, and 2) to review the progress made under the National Design Initiative 
and evaluate what new directions and topics should be added to the Initiative. 
 
This report contains an overview of the EDA area, its funding history, a discussion of some 
major challenges for the future, related emerging technologies and how EDA experience may 
help in developing these technologies, educational aspects and challenges, EDAʼs relation 
with CS theorists and how this collaboration can be resurrected, and finally in Section 8, a 
series of recommendations on what might be done to promote EDA and help with the serious 
challenges it faces in the future. The recommendations are divided into 1) promoting research, 
2) supporting educational programs, and 3) encouraging enhanced collaboration with industry. 
An appendix provides some details of the workshopʼs organization, participants, and program 
of talks. 

                                                
1  brayton@eecs.berkeley.edu and cong@cs.ucla.edu 
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Background, Motivation, and Objectives 

 
Electronic Design Automation (EDA) of very large-scale integrated (VLSI) circuits and systems 
is an important field in computer science and engineering. It has made a significant impact on 
the development of information technology—in particular, by supporting the successful scaling 
of Moore's Law in the past 40 years, which in turn created the high-performance and cost-
efficient information technology infrastructure that has transformed our life and society. The 
success of the EDA field is inspiring for many reasons: 

• It has successfully managed the exponential increase in design complexity—from the first 
microprocessor (Intel 4004) with 2,250 transistors to the latest multi-core processor with 
over a billion transistors. 

• It is one of the first fields in computer science and engineering (CS&E) that has applied the 
concepts and techniques of computational modeling, computational thinking, and 
computational discovery to an application domain (electronic circuit design) and achieved 
remarkable success.  It has completely transformed the way that electronic engineers 
design and manufacture integrated circuits. Every circuit being designed today starts with a 
computational model (specified in an executable programming language) at a high level of 
abstraction. It then goes through a sequence of synthesis and optimization transformations, 
followed by rigorous digital simulation and prototyping, as well as formal and semi-formal 
verification, before it is finally manufactured via advanced lithographical and chemical 
processes. 

• The EDA field is one of the earliest to engage in inter-disciplinary collaboration, where the 
computer scientists and engineers in EDA successfully collaborated with the electrical 
engineers to derive various levels of circuit models; with physicists and chemists to derive 
manufacturing models; with theoretical computer scientists to conduct various kinds of 
complexity analysis; with applied mathematics and optimization experts to improvise highly 
scalable simulation and synthesis algorithms; and with application domain specialists to 
develop intellectual property (IP) libraries, etc. 

For these reasons, the first objective of this workshop was to reflect on the success of EDA to 
see if its practice can influence other fields of computer science, and if its methodology can be 
applied to other application domains.  
 
Currently, the EDA field is also facing serious challenges in its own domain.  For example, non-
recurring engineering (NRE) costs associated with VLSI circuit design are skyrocketing, with 
estimates of over $30M per ASIC design undertaken. The rapid increase in the number of 
transistors available on a single chip leads to system-on-chip integration, with complex 
interaction between software and hardware, digital and analog, etc. Moreover, the field of 
applications enabled by semiconductor technology is growing at a rapid rate, ranging from very 
high-performance microprocessors and signal processors, to a broad array of low-power 
portable devices, to micro sense/communicate/actuate networks of chips that are driven by very 
low per-unit cost and extremely low operating power. Designers must not only create chips that 
function properly in conventional digital and mixed-signal operation, but must also comprehend 
sensors that respond to signals from many physical domains, such as pressure, temperature, 
chemical, and optical. The design problems are further compounded by the introduction of many 
physical phenomena determining the performance of severely scaled semiconductor devices. 
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For example, power and performance characteristics of transistors are becoming statistical in 
nature. The probability of soft or permanent errors is much higher in the new generation of 
CMOS devices at 32nm or below, or in emerging non-CMOS devices. These present 
unprecedented challenges to the EDA field. 
 
In order to address these challenges, the National Science Foundation (NSF) and 
Semiconductor Research Corporation (SRC) held a joint workshop in October 2006 to study the 
future directions of design automation. They made the recommendation that “research in design 
technology and tools be increased through a National Design Initiative which focuses on three 
research areas:  

1. The development of a powerful new, physically aware, system design science and 
methodologies to increase design productivity by one order of magnitude over current 
techniques for integrated systems containing billions of elements. 

2. The creation of robust optimization methodologies that provide guaranteed performance of 
integrated systems composed of devices whose characteristics are highly variable, that 
operate in several different physical domains, and that have uncertain reliability. 

3. A revamped, systematic, and greatly improved interface to manufacturing to support the 
design of high-yield systems that obtain maximum utilization of the technology. Such an 
effort was deemed to be critical "to maintain U.S. leadership in design for integrated nano- 
and microsystems."   

 
The second objective of this workshop was to review the progress made under the National 
Design Initiative and evaluate what new directions and topics should be added to the Initiative. 
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Discussions and Conclusions 

 

1.  EDA Defined and History 
1.1  What is EDA? 
The current Wikipedia definition of EDA is “the category of tools for designing and producing 
electronic systems ranging from printed circuit boards (PCBs) to integrated circuits. This is 
sometimes referred to as ECAD (electronic computer-aided design) or just CAD.” The workshop 
attendees felt that this definition was somewhat narrow, as it focuses mainly on the use of EDA 
technologies.  We agreed that it was equally important to emphasize the following three aspects 
of EDA: 

1. EDA consists of a collection of methodologies, algorithms and tools, which assist and 
automate the design, verification, and testing of electronic systems. 

2. It embodies a general methodology that seeks to successively refine a high-level 
description to low-level detailed physical implementation for designs ranging from 
integrated circuits (including system-on-chips), to printed circuit boards (PCBs) and 
electronic systems.   

3. It involves modeling, synthesis, and verification at every level of abstraction. 

The second and third aspects of EDA in this definition can be applied easily to different 
application fields, other than the designing of electronic systems. 
 
1.2  Evolution of EDA 
Although the history of design automation algorithms such as Kernighan and Lin's bi-partitioning 
heuristics and Kenneth Hall's r-dimensional quadratic placement procedures predates the VLSI 
era, it was not until the early 1980s that the mystique surrounding VLSI chip design and 
fabrication was unveiled by Mead and Conway. This led to the cultivation of VLSI education in 
universities and to the flourishing of research in VLSI system design and electronic design 
automation (EDA) which, in turn, created  automation tools for logic synthesis, layout 
generation, circuit simulation, design verification, reliability modeling, chip testing, debugging, 
and yield analysis. It is beyond the scope of this report to exhaustively chronicle the evolution of 
EDA research during the last three decades or to catalog how core disciplines of sciences such 
as physics, mathematics, computer science, statistics, and biology have shaped EDA research 
by establishing the foundation of the underlying theories for multi-criteria design optimization 
and complexity management.  
 
One way of characterizing the advancement of VLSI automation tools is to demarcate them into 
different eras depending on their chief optimization criterion—namely, area, timing, power, 
reliability, and nano-scale issues. In the early 1980s, silicon area was at a premium, and the 
underlying theoretical foundation of layout tools was rooted in graph theory (min-cut, quadri-
sectioning), convex optimization (geometric programming), stochastic methods (simulated 
annealing), evolutionary biology (genetic algorithms), physical laws (force-directed relaxation 
methods), circuit theory (energy minimization in resistive networks), and spectral methods 
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(eigenvalue-based partitioning).  In the mid-1980s, stringent timing constraints motivated the 
development of theoretical underpinning for interconnect delay models by using linear algebra 
and matrix solvers (Krylov sub-space, Arnoldi, Pade, Pade via Lancoz algorithms), numerical 
analysis (differential quadrature method, finite difference), frequency domain solvers (method of 
characteristics, FDFD), and other theoretical techniques. 
 
In the early 1990s, energy optimization requirements led to the adaptation and extension of 
finite element methods (FEM) and gridded techniques to solve large second-order PDE 
associated with the heat equation. The need for integration of full-chip thermal analysis with chip 
layout packages was realized by applying fast Fourier and discrete cosine transformation 
techniques to accelerate the multi-layer Greenʼs function solvers over the quadruple integral 
spaces. In the late 1990s, higher reliability and quality assurance demands led to the 
development of technology-centric EDA tools that tackled lithographic limitations, process 
variations, and anomalous operating conditions. Formal design verification and validation 
methods were adopted in EDA tools to ensure correctness of the system design by using model 
checking, SAT solver, static analysis, and other mainstream CS theories.  Multiscale/multilevel 
optimization techniques also received a lot of attention in the late 1990s, especially in physical 
design, to cope with the rapid increase in design complexity. 
 
By the new millennium, the VLSI industry made a quantum leap by shattering the red brick 
barriers of 100nm and rapidly inching towards 32nm nodes. Consequently, new-generation EDA 
design tools for nanoscale CMOS chips started adopting computational quantum physics 
(density function theory, non-equilibrium Green's function, Wigner's function) to tackle nano-
scale issues such as leakage currents through high-k gate dielectrics, as well as to develop 
multi-scale modeling for the beyond-Moore's-Law technologies such as carbon nano-tubes, 
graphene and tunneling FETs, quantum dots, single electron transistors, and molecular devices. 
 
In parallel with the progress in modeling and optimization techniques used for DA problems, 
another significant development was the rise of design abstraction and the use of accurate 
estimation methods to cope with the exponential increase in design complexity. Mead and 
Conway led the way with their book that opened up VLSI to the masses with its simplified design 
rules. Accurate estimation methods, like model order reduction, delay modeling, high-level 
models, etc., have allowed the design flow to be divided into separate concerns.   Design 
abstraction has risen from polygon drawing, to schematic entry, then to RTL (register-transfer 
level) specification using hardware description languages (HDLs), and most recently to behavior 
specifications—for example, in C, C++, SystemC, and Matlab code. 

2.  Funding for EDA Research 

2.1  NSF's Funding of EDA 
NSF's funding of academic EDA research has fluctuated between $8 million and $12 million in 
recent years. For the past one and a half decades, the bulk of this funding came from the 
Computer & Information Science & Engineering (CISE) Directorate under its core DA program, 
while additional awards were provided by the Electrical Communications and Cyber Engineering 
(ECCS) Division in the Engineering Directorate,2 and to a lesser extent, by the interdisciplinary 

                                                
2 For reference, the funding for the CISE Directorate and the ECCS Division of the Engineering Directorates in 
FY2009 is $574M and $125M, respectively.  The total funding for NSF in FY2009 is $5,183M.  
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Mathematics of Computer Sciences (MCS) program jointly run by CISE and the Division of 
Mathematical Sciences (DMS). Because the main mission of NSF is to foster groundbreaking 
discoveries, EDA awards are multifarious, variegated, and disparate, covering the broad 
spectrum of EDA research that ranges from high-level synthesis of mixed-signal systems to 
multi-scale simulation of emerging technologies. Special research initiatives like the Information 
Technology Research (ITR) and National Nanotechnology Initiative (NNI) have provided 
additional funding in the past to boost EDA research activities. It is fair to estimate that ITR 
added approximately $3 million/year to the design automation area during its five-year term from 
FY1999 to FY2004. The CISE directorate also funded approximately $2 million/year of design 
automation related research from its share of the National Nanotechnology Initiative up until 
about FY2005.  
 
The CISE Emerging Models and Technologies (EMT) program (recently disbanded) also 
stimulated EDA research in disruptive nano, bio, and quantum technologies. Typical EDA 
projects were aimed at developing photonics clock distribution networks, synthesis of 
biomolecular computing systems, DNA computing using self-organized Wang tiles, multiscale 
modeling of nano and molecular systems, and synthesis of quantum logic circuits. It is not clear 
how the nearly $2 million that EMT spent on EDA research will be distributed in the re-clustered 
CCF division. 
 
The Division of Mathematical Sciences (DMS) has often funded proposals that had 
mathematical underpinning for EDA research: e.g., Markovian modeling to study convergence of 
simulated annealing algorithms, convex programming and polyhedral methods, algorithmic 
semi-algebraic geometry and topology, nonlinear programming under density inequalities, etc. 
The ECCS division funded several multiscale modeling and simulation projects for emerging 
nanotechnologies and quantum engineering systems. 
 
NSF has also promoted young educators through its CAREER awards program that funded 
about five new EDA projects per year from 1996 through 2001 from the design automation 
program. Design automation researchers also received some funding from the other programs 
mentioned above, including the EMT program (for nano related research), the CISE/CNS 
division (for embedded systems research), or from the Engineering Directorate (for analog and 
mixed signal research). The total number of CAREER awards in such areas is estimated to be 
about ten. Recently, this number has shown a somewhat declining trend, e.g., altogether five 
CAREER awards per year. However, it should be noted that during the period 2003-2008, the 
design automation CAREER awardees were winners of three prestigious Presidential Early 
Career Awards for Scientists and Engineers (PECASE).  All of these funding opportunities 
contribute to the total $8 to $12M in funding that we estimate for NSFʼs DA program, which 
represents about 1.3% to 2% of the total available funding for the CISE Directorate and the 
ECCS Division of the Engineering Directorate—the two major funding sources for the DA 
program in NSF. 
 
2.2  Foundational Aspects of EDA and Its Role in CISE  
While EDA has been supported traditionally at NSF by CISE, there is a concern that some feel it 
should be supported by the Engineering Directorate instead. However, CISE is a directorate that 
supports computer engineering (CE) as well as computer science (CS), and EDA has long been 
one of the pillars of CE, together with architecture and software. It needs strong support 
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because, being both an engineering and theory discipline, it is more expensive due to the need 
for infrastructure support. 
 
EDA research does rest at the interface between engineering and computer science because it 
is an application of computer science to solve engineering problems. While EDA research must 
be governed necessarily by engineering requirements and limitations, the solutions to EDA 
research problems have long been achieved through the use of math/CS core theories. 
For example, solutions to problems in physical design use graph theory; logic design uses 
Boolean algebra; simulation uses dynamical system theory; and verification uses numerous 
theories, including models of computation and programming language theory. These solutions 
also require the development of efficient algorithms for solving optimization problems, numerical 
analysis of nonlinear systems, satisfiability problems, stochastic analysis, etc. The development 
of such algorithms obviously requires researchers with strong backgrounds in computer and 
computational sciences. EDA is not just practice, but a tightly connected combination of theory 
and practice. This can be easily seen by an examination of almost any paper in the EDA area; it 
will show that EDA research must be backed up with theory and proofs.  Such theoretical results 
needed to solve EDA problems may indeed solve open questions in math/CS theory through the 
application of an EDA perspective to the problem. For example, verification is solidly based on 
mathematics and CS theory; it is inherently multidisciplinary, involving researchers in 
verification, as well as domain experts who know about the kinds of systems to be verified 
(mixed-signal circuits, for example).  
 
Moreover, researchers have recently demonstrated that this EDA perspective is valuable in 
solving problems in the sciences.  For example, researchers are applying EDA ideas to the 
development of tools for solving problems in physics, chemistry, systems biology, and 
synthetic biology.  For all of these reasons, we continue to believe that the correct home for 
EDA is within the CISE directorate at NSF. 
 
2.3  Limitations of Industrial Funding as a Paradigm for EDA Support 
Others may feel that since the EDA problems that are tackled are often of direct interest to 
industry, industry should then be the primary supporter.  Indeed, industry has been a good 
supporter of EDA, primarily through the Semiconductor Research Corporation (SRC).  However, 
these funds are quite limited now, and even in good economic times they have not been 
sufficient to cover all of EDAʼs needs. As described above, EDA research requires theoretical 
studies that may be too far removed from commercial application, thus making it difficult to 
obtain industrial sponsorship. Further, new research in applying EDA research to the sciences 
will lack support by industry. Industry will probably continue to be a good supporter of near-term 
research problems, but we will continue to need NSF support for riskier, longer-term research 
with less obvious commercial application.  

Model checking, as well as model reduction, are examples where, without initial long-term 
funding (e.g., by NSF and DARPA), and even when industry was much more tolerant of “far out” 
research, they most likely would not have reached a level where industry would be interested. 
For example, model checking was developed from programming language theory over a period 
extending back to 1981. For the first ten years, it was supported exclusively by NSF. Now major 
EDA companies like Synopsys and Cadence are marketing model checkers. 
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2.4  SRC's Support of EDA 
When the SRC began in 1982, the area of design sciences was an initial focus area, and EDA 
research was a major part.  Such funding constituted about 25% of SRCʼs budget; the 
remainder was devoted to technology and manufacturing. Todayʼs SRC organization has two 
design-related areas: computer-aided design and test, and integrated circuits and 
systems.  These have absorbed an increasing share of member-directed contributions and now 
make up about 45% of SRC-funded research (the total EDA-related funding from SRC is 
estimated to be about $5M for 2009).  Interest in design comes not only from CAD member 
companies, but from integrated device manufacturers, fabless, and fab-lite companies, and 
even from equipment manufacturers and foundries.  There are several reasons for this: 

1. It is getting harder to continue on the Mooreʼs Law density-performance curve using 
technology scaling alone. Improvements in design techniques and design tools have 
provided a critical boost to this continued pace.  

2. The International Technology Roadmap for Semiconductors (ITRS) has had an increasing 
emphasis on design in recent years, with much more material in chapters on design and 
design drivers.  The current ITRS emphasizes “the importance of software as an integral 
part of semiconductor products” and “software design productivity as a key driver of overall 
design productivity.” 

3. Productivity improvements and improved time-to-market are key drivers for improvements 
in design automation. 

4. In order to be competitive, a diverse set of applications (no longer just general-purpose 
microprocessors) drives industry to show differentiation in design (not just technology), in 
both hardware and software. 

 
SRC continues to be an important funder of design automation research, supporting faculty in 
both computer science and electrical engineering departments and connecting them with their 
industrial counterparts. As well a formal verification, optimization techniques for “improving” 
circuits and systems are another area in which work firmly grounded in theory has been put into 
practice by industry.  “Improving” is in quotes because this no longer means to make better 
according to a single measure—now multi-objective optimization is needed to meet area, speed, 
power, manufacturability, and a host of additional requirements.  While progress in logic 
synthesis, placement and routing, and test necessarily required “short thin designers” to apply 
heuristics, and “seat of the pants” techniques to make progress and show comparability with 
manual efforts, these approaches are being replaced by algorithmic processes with strong 
theoretical foundations. 

  
Design at the logic level increasingly requires knowledge of the physical properties of gates, 
wires, and even transistors. Pressure to reduce power, maintain performance, and still have 
working chips has required designers to look down to the manufacturing level as well as up to 
the system design. For example, power minimization relies on reducing leakage at the bottom, 
as well as employing system-level techniques such as multi-core architectures. All these areas 
require strong and increased connections with physics, as well as theory of computation and 
fundamental algorithms. 
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2.5  Partnerships Between NSF, SRC, DoD, and Industry 
The foundational efforts described, which have enabled optimized logic and physical design, 
formal verification, design for test, and design for manufacturability, have not relied, and cannot 
rely, on industry support alone. SRC plays a key role in combining some of the resources of 
industry to focus on pre-competitive areas of mutual interest. One successful example is the 
Focus Center Research Program (FCRP), which is jointly funded by SRC member companies 
and DARPA.  In 2008, there were five FCRP centers nationwide, with GSRC and C2S2 centers 
directly related to the design automation program.  The EDA-related funding from these two 
centers was estimated to be from $4M to $5M in 2008.  
 
A similar joint funding model is also being explored by NSF. Recently, NSF partnered with 
industry in areas such as analog/mixed signal design and multi-core design and architecture to 
support work important to industry and also important to part of the CISE mission.  
 
The total available funding to the design automation research is estimated to be around $20M. It 
combines various programs from NSF, SRC, and FCRP, with about half provided by the NSF 
CISE program. However, other countries with competitive strength are making much more 
substantial investments in this area.   We discuss this in the next section.   
 
2.6 Comparison with Some International Funding Sources 
During the workshop, there were several discussions about the levels of funding support for 
EDA overseas, which seemed to suggest that the U.S. is under-funding this area. We list some 
of the data provided.  

2.6.1  Taiwan 
Funding for EDA in Taiwan comes from direct government funding and from 
university/industry/government partnerships. One of the significant government funding 
programs related to EDA is the system-on-chip program, funded at $70M USD per year since 
2001. Topics include integrated circuits, embedded software and design automation research.  
We estimate that a significant portion (say 50%) of this program is used to support EDA.  Other 
government funding programs also include research programs related to EDA, such as the 
nanotechnology program, funded at $100M USD per year since 2003, and the telecom program, 
funded at $70M USD per year since 1998 (topics include wireless, broadband and Internet 
telecommunications). These government programs include support for interaction with non-
Taiwan companies for longer-term stays for students and faculty.. 

In the university/industry/government program, the government is the primary enabler by 
encouraging industrial matching and participation. It is worth noting that government grants have 
only a 5% overhead and industry grants only a 20% overhead. 

2.6.2  Europe 
European funding for R&D happens on various levels, more or less uncoordinated. Although 
there is no program specifically dedicated to electronic design automation, many European 
countries have national programs to support R&D in areas like information and communication 
technology (ICT), nanotechnology, embedded systems, advanced computing, and software 
technology, which all contain EDA aspects. The European Community has budgeted for and 
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supported information technology, microelectronics and similar technologies since the early 
1980s via so-called "Framework Programs."  
 
Currently, the seventh such framework program (FP7) covers the period from 2007 to 2013. The 
program assigns $9.050 billion Euros to ICT and $3.475 billion Euros to nanosciences, 
nanotechnologies, materials and new production technologies, distributed over the entire period 
(http://cordis.europa.eu/fp7/budget_en.html). The program attempts to foster cooperation 
between countries. Participants must organize themselves in project groups composed from 
institutions from at least three different countries.  
 
The EUREKA Consortium is another source, currently covering 38 countries. This supports 
European international projects with funding provided by national sources. The consortium 
raised funds on the order of $3.1 billion Euros in 2008. Key members are Austria, Belgium, 
Finland, France, Germany, Spain, Switzerland, the UK, and Israel 
(http://www.eureka.be/contacts/fundingList.do). For example, "Electronics, Microelectronics," 
supported 50 projects with a budget of $195.26 million Euros over ten years 
(http://www.eureka.be/thematic/showPrjThematic.do?area=1.1). 
 
One of the latest initiatives of EUREKA is "CATRENE," meaning "Cluster for Application and 
Technology Research in Europe on NanoElectronics," which started in 2008 and is to finish in 
2012.  CATRENE has a $3 billion Euro budget. As of August 2009, 143 partners from 13 
European countries were participating. Partners are both industry (e.g., Infineon, NXP, Philips, 
ST-Microelectronics, Airbus and Volkswagen, and CADENCE) and universities. Currently 13 
projects are pending, and two are explicitly addressing EDA 
(http://www.medeaplus.org/web/projects/project_list.php). 
 
Complementary  to  the  CATRENE  program  is ENIAC-JRT, targeted at $3 billion  Euros for the 
2008 to 2013 time frame  
(http://www.medeaplus.org/web/downloads/clips_medea/Elektronik%28Jan09%29.pdf).  
Its predecessor, MEDEA+, covered 2001 to 2008 with a budget of $4 billion Euros. It supported 
70 projects (http://www.eureka.be/inaction/searchStrategic.do) of  which  15  were EDA. 75% of 
the funding was from companies  
(http://www.medeaplus.org/web/downloads/medeaplus_brochure.pdf). 
 
As another data point, Prof. Giovanni De Micheli (a former professor at Stanford and grantee of 
the NSF design automation program) provided us with data concerning a large effort in 
Switzerland that he directs. The nano-tera.ch program is a grant secured for the period 2008 to 
2011, but it will happen with an 18-month delay. Ten projects were started in June 2009, with 
ten more coming in January 2010. Funding of $56M (with an additional commitment of $56M 
from each of six Swiss institutions) was inserted in the Swiss federal budget for 2008 to 2011. 
Money comes directly from the SER (Swiss Ministry of Research) to support collaborative 
research. Technically, six institutions formed a consortium to run nano-tera: EPFL (lead), ETHZ, 
CSEM, and Neuchatel, Basel and Lugano Universities. Technical information on this program 
can be found at http://www.nano-tera.ch/. Two points to be made are 1) this program is 
independent of EU/FP7; links with FP7 may be developed, but for now this is a Swiss program, 
and 2) actual research is just starting with the hiring of pre/post-doctoral students. 
 
It is not clear what percentage of these funding opportunities is dedicated to the DA-related 
research.  However, if we simply take 2% of the funding dedicated for nanosciences, 
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nanotechnologies, materials and new production technologies ($3,475 billion Euros) as part of 
the FP7 program (recall that 2% is the share of DA programs in the CISE Directorate and the 
ECCS Division of the Engineering Directorate in NSF), it amounts to $105M USD over five 
years, which is 2 to 3X larger than DA program funding from NSF. 

These comparisons raise a lot of concerns about the level of U.S. investment in design 
automation, a key area of information technology. For example, it is alarming to see that the 
government funding for the DA program (estimated to be more than $35M/year) in Taiwan, with 
its GDP 2.7% of that of the U.S. (based on 2007 numbers), is 1.5 to 2X times higher than the 
total combined funding in the U.S. from NSF, SRC, and FCRP in design automation. (It is 
probably not a coincidence that Taiwan is doing extremely well in the IC industry; for example, it 
has the largest share of the worldwide IC foundry market.)  This underscores the need and 
urgency for the U.S government and industry to partner in order to significantly strengthen the 
design automation support needed to keep our competitive advantages in this area.   

3.  Foundational Areas for Future DA Support 
3.1  Transformative and Incremental Research 
The National Science Board (NSB) and the U.S. Congress recently mandated NSF to look into 
the possibilities of funding transformative research. However, while accepting the need for and 
encouraging transformative technologies, NSF program directors and the research community 
in general recognize that historically much progress has been accomplished by consistently 
pushing important areas over long periods of time. For example, in EDA, model checking 
involved 28 years of research with long periods of solid (but sometimes incremental) progress; a 
similar trend occurred with model reduction. In funding research, it is important to keep in mind 
that many fundamental breakthroughs are achieved typically after years of steady progress; 
moreover, the exact nature and impact of a genuine breakthrough is often difficult to predict. 
 
3.2  Verification and Model Checking 
Verification is an essential and increasingly important part of EDA, and formal model checking 
has become a major contributor. Model checking arose from basic research in the programming 
languages and logics of the programs community. The early papers were published in POPL 
(Symposium on Principles in Programming Languages) and LICS (Logic in Computer 
Science).  Only later was it realized that model checking could be used for verifying the 
correctness of sequential circuit designs. Indeed, model checking and other state-exploration 
techniques are probably easier for computer hardware than for computer software. Hardware 
companies have used model checking since the mid-1990s, while software companies like 
Microsoft have only recently begun to take a serious interest in formal verification. 
 
Model checking is also a good example of a case where initial support by NSF paid off. The first 
papers were written in 1981 and 1982.  Research was supported entirely by NSF until the early 
1990s. When the power of symbolic model checking with OBDDs was realized, SRC also began 
to fund research in this area.  Computer companies did not directly support research at 
universities on this topic, and EDA companies like Cadence and Synopsys did not develop 
commercial model checking tools until 2000, when bounded model checking with fast 
propositional SAT algorithms was proposed. (Incidentally, the current rash of fast SAT 
algorithms, now used for many purposes in EDA as well as other fields, were also developed 
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primarily by EDA researchers in universities, e.g., GRASP at the University of Michigan and 
Chaff at Princeton, where this recent research was motivated by EDA applications.) 
 
Formal verification is inherently multidisciplinary; researchers must have a strong background in 
mathematics and theory. They need to know about mathematical logic, automata theory, 
OBDDs, SAT algorithms, decision procedures (like linear real arithmetic), programming 
language theory, models for concurrency, static program analysis and symbolic evaluation. To 
deal with analog and mixed-signal circuits operating in noisy environments, they will need to 
know differential equations, probability theory, and stochastic processes. A strong background 
in CS theory is necessary, but not sufficient. Deep knowledge of digital design and computer 
hardware is needed, often involving joint projects between CS and ECE groups or working 
closely with someone at a company interested in using the techniques. Since companies are 
often reluctant to release their designs to researchers in academia, summer internships for 
graduate students at companies are often very important. 
 
Much important research still needs to be done in verification. 

• Scalability will always be a problem because of the state explosion in highly concurrent 
systems. 

• Embedded systems involving discrete and continuous behavior require a breakthrough. 

• Little research has been done on establishing the correctness of analog and mixed-signal 
circuits. 

• Assertions about non-functional properties such as power might be checked, but little 
research has been done here. 

• Developing tools that regular engineers can use is a major challenge. Difficulties exist in 
writing specifications in a notation like temporal logic and in specifying the environment in 
which a device to be verified will operate. Counter-examples can be quite long, involving 
many state variables and inputs, and locating its cause can be challenging. 

 
3.3  Synthesis Research 
The development of logic and physical and high-level synthesis before the early 1980s opened 
up the use of higher levels of describing a design, such as the register transfer level (RTL), 
which is almost universally used today. High-level synthesis has had an almost equally long 
history, while physical synthesis started at the beginning of integrated circuit developments. 
Over the years, synthesis capabilities have been extended significantly, both in scale, speed 
and quality of results. Also, as newer methods of implementing logic, such as FPGAs, were 
developed, synthesis methods were adapted and devised for these new devices and their 
multiple forms. Methods for front-end estimation have played a critical role in allowing earlier 
design convergence, as well as yielding better results. 
 
The acceptance of synthesis methods has been critically dependent on providing results that 
can compete or be better than manual methods. Also, synthesis techniques have been critical to 
the acceptance of new implementation methods. For example, several start-up ventures have 
invented implementation structures which, on paper and with some circuits implemented by 
hand, looked promising. However, the automatic synthesis of logic into these structures was 
vastly underestimated and resulted in failure of such ventures. 
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Although synthesis is frequently thought of as being mature and not needing further support, it is 
fundamental and still needs to be exploited and extended to larger ranges of scalability. 
Synthesis is also critically intertwined with verification; e.g., some synthesis methods are not 
used because they canʼt be verified formally, while the formal verification task can be simplified 
if it is given some synthesis history and equally strong methods for circuit reduction, such as 
induction. Although synthesis can be made scalable by partitioning the problem into smaller 
parts, this can limit the quality of results that can be obtained. Thus, extending the scalability of 
the underlying algorithms can improve quality and make resulting designs more competitive. 
Such development will aid both synthesis and verification since both areas share much of the 
fundamental algorithms, such as SAT, BDDs, representation and manipulation of logic, 
abstraction, speculation, interpolation, induction, etc. 
 
Another development is the synthesis for different objectives. Early synthesis was aimed at 
decreasing area and delay. More recently, other objectives have come into play, such as power, 
noise, thermal, verifiability, manufacturability, variability and reliability. It is clear that more 
criteria will be seen as new technologies develop, and new models and optimization techniques 
will be needed to address such requirements. 
 
Finally, synthesis is facing the challenges of raising the level of abstraction.  For example, 
current SOCs can accommodate thousands of simple processor cores (such as Intel-386 
equivalent processors). Instead of synthesizing a design into a network of standard cells (the 
current practice), one may consider synthesizing it into a network of processors, or a mixture of 
processors and standard cells.  In this case, a C/C++/SystemC based behavior specification is a 
more natural starting point, as such specifications are more software friendly. New modeling, 
synthesis, and verification techniques are needed to support such new design methodology and 
a new level of design abstraction. 
 
3.4  Programming Language Research 
A good programming language may be crucial to achieving scalable design methodologies. It is 
generally agreed that the language design aspect of Verilog/VHDL leaves much to be desired. 
Unfortunately, the current EDA response seems to be kitchen-sink languages (SystemVerilog) 
that combine every aspect of every language (Verilog, e, Vera, ...) into the language definition. 
This complexity slows down the standardization process, and definition release of languages 
like SystemVerilog 3.1a, which took three major revisions just to get the "core" language right. 
 
In contrast, the programming language/software world may have things to offer: clean core 
semantics, types and modularity, core languages together with well-designed libraries, static 
analysis, etc. A secondary benefit of a clean language design is that it may be easier to work 
with on tools within academia. At the moment, the investment to build the front-end for 
SystemVerilog is enormous, and hard to justify in an academic context. 
 
Languages can be a great opportunity for industry/academic alliances. Language innovations 
are more easily started within academia with a clean slate, while a company has so much 
legacy code that it wonʼt change, or it wonʼt think about new languages easily. However, 
industry can provide challenging designs to judge the effectiveness of the language design or to 
motivate language constructs; and ideally, academics can adopt the best features. A good 
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demonstration of research ideas from programming language/verification communities 
influencing industrial design is “Bluespec.” 
 
3.5  Analog and Mixed-Signal Design 
Automation techniques for the growing portion of systems made up of analog circuits lag behind 
those in the digital realm. This is particularly critical given two quantitative facts: 1) 66% of 
today's integrated circuits are mixed-signal designs, i.e., they incorporate analog components; 
2) numerous studies show that the analog portions of these designs are most frequently at fault 
when chips fail at first silicon. Moreover, scaling to the nano-scale level has led to the 
breakdown of clean digital abstractions to the point that at the level of physical implementation, 
the tools and techniques used for “digital” design are closely related to those for mixed-signal 
and RF design. We expect this trend to accelerate. 
 
Given this data, it is essential to continue to invest in fundamental solutions for the growing 
“non-digital” side of EDA.  Improvements will rely on foundational mathematical research 
to bring increased automation. Where human experts rely on intuition, design automation tools 
rely on a diverse range of aggressive optimization formulations:  numerical, combinatorial, 
geometric. A unique attribute of these analog problems is that concurrent consideration of 
functional, electrical, and geometric aspects are necessary to compete with the manual designs. 
Experts often can transform large mixed-signal problems into small, workable abstractions that 
preserve the essential design features. 
 
3.6  Nonlinear Model Reduction 
Progress over the last twenty years has rendered the analogous "model order reduction" 
problems solvable for linear systems (e.g., via robust Pade' approximations), and for finite state 
digital systems (e.g., initially via symbolic model checking with BDDs, later with Boolean SAT-
based bounded model checking).  Unfortunately, no such robust theory exists for the more 
common nonlinear cases that dominate in the mixed-signal and low-level digital realm. Nor are 
there complete solutions for designing or assuring correct behavior of these analog systems in 
the presence of unavoidable statistical manufacturing fluctuations. Digital systems are designed 
to hide the physics of the fabrication process; analog systems are designed to exploit these 
behaviors. As fundamental components move further into the nano-scale regime, analog 
systems are increasingly vulnerable to these small upsets. Thus, great opportunities exist in 
building the next generation of fundamental numerical, combinatorial and geometric algorithms 
to handle these essential designs. Moreover, improvements in fundamental verification and in 
algorithmic simulation are mutually reinforcing. Larger and more complex artifacts can be 
designed and used only when their component interactions can be guaranteed with assurance; 
synthesis tools which rely on iteratively exploring a huge number of different solution 
configurations can be targeted to larger and more challenging designs only when each solution 
candidate can be evaluated in one second, instead of one hour or even one day. Also, nonlinear 
model reduction will be a key enabler in verification and model checking of hybrid systems. 
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4.  Key EDA Challenges  
We see the following as being the main EDA challenges. 

4.1 Scalable Design Methodologies  
At its core, design automation is about developing design methodologies that best address the 
emerging technology challenges. ASIC design methodology based on standard cells and 
synchronous timing was critical in providing the foundational basis for the design tools that 
eventually enabled it. Future nano-scale designs face significant complexity challenges which 
demand design methodologies that will continue to scale in the face of increasing complexity. 
The following attributes are critical for success: 
 

1. Disciplined, predictable design. The design process needs to be highly disciplined; only 
then does it lend itself to automation. Further, predictability is important, both in the design 
process as well as in design quality. A predictable design process leads to predictable 
design schedules, and a predictable design quality leads to dependable results. Current 
design flows may not converge, or have unpredictable tool runtimes, or provide unexpected 
results. 

2. Intuitive design environments, simplified user interfaces. Current design environments 
are too complex, with too many parameters that cannot be understood by designers. This is 
very limiting and needs to be replaced with very intuitive and simplified interfaces that can 
lead to fast design cycles, and thus enable designers to better explore the design space. 

3. Appropriate abstractions. An important component of the ASIC design methodology was 
the separation of the electrical concerns from the logical aspects of hardware design. With 
nanoscale scaling, this separation is under threat. Hardware designers increasingly need to 
understand the underlying electrical models to better predict power consumption and 
reliability of circuits. This diminishing separation of concerns makes it harder to have 
multiple entry points into the design flow based on expertise; this limits the pool of 
designers and eventually the number of designs. Automatic abstraction techniques can play 
an increasingly larger role in helping with this. Our current block-based signoff techniques 
may not be sufficient to allow efficient design (in manpower and area) in the face of the 
increasing region of influence from physical effects.   

4. Scalable design methodologies along the axis of different circuit functions. One 
example is that the lack of automation for embedded arrays poses an increasing 
problem. Arrays (by virtue of size and number) are fertile ground for automation; the need 
for efficient design is great, but the highly structured nature of the circuits lends itself to 
automation. Another example is analog circuit design, which also requires specialized 
design flows. 

5. Standardized interfaces. It is essential that we have open interfaces for different parts of 
the design flow. Proprietary formats from vendors impede progress in our field. 

 
4.2  Scalable Design Synthesis, Validation/Verification 
Existing design synthesis and verification techniques are no longer scalable. Their costs and 
limitations are restricting the design of future computing platforms, and even the inclusion of 
additional features in existing platforms. If this is not suitably addressed, the impact will be felt in 
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all of computer science. This directly hits the economic basis of Mooreʼs law—increased 
computation per unit cost with each generation, which in turn drives the development of novel 
applications that exploit this cheaper computation. This can no longer be counted on and will 
severely limit future computer science. There are multiple possible solution directions to be 
explored here:  

• Higher level of design abstraction 
• Better design principles and languages 
• Formal and semi-formal verification techniques  
• Runtime validation 
• Extending the scalability of the underlying fundamental algorithms 

 
4.3 Dealing With New Technology  
Design in the late- and post-Si era needs to deal with new devices as well as manufacturing 
technology. Important changes in the future include 3D designs, graphene-based and other 
emerging devices, as well as new lithography techniques. These will need new techniques and 
tools for modeling, synthesis and simulation.  
 
4.4  Designing with Uncertainty and Fragility  
This adds a critical dimension to existing design methodologies as reliable circuits and systems 
will have to be built using unreliable fabrics. There are uncertainties due to physics, e.g., 
increased soft-errors in finer geometries due to energized particle hits and uncertainties in 
manufacturing in fine geometries due to system and random variations. These contribute a 
diverse set of failure modes that need to be accounted for at appropriate levels of the design. 
 
4.5  New Classes of Algorithms.  
There are several new classes of algorithms that need to be explored when developing scalable 
design methodologies. 

1. Linear/sub-linear algorithms. Increasing complexity and problem scale cause quadratic, 
or in some cases even log-linear algorithms, to have unacceptable run times. A significant 
push is needed in exploring linear and sub-linear algorithms across design tools. 

2. Incremental algorithms. Algorithms that can recognize and exploit incremental design  
changes can significantly help reduce design time. 

3. Parallel algorithms. As we move to the multi/many-core era, it is critical that EDA 
algorithms be able to exploit future platforms.  

4. Deterministic algorithms.  With long design cycles, it is important for the algorithms to be 
deterministic. This is critical in reproducing results and providing predictability in the design 
process, and especially critical for parallel programs where races are an important 
contributing factor to non-determinism    

5. Design for security. To ensure data privacy, it is increasingly important for designs to be 
resilient in the face of security attacks. Examples of this are various forms of side channel 
attacks. These can be tackled potentially as part of the design process. 
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5. Emerging Areas and EDA Technology 
Given the new definition of EDA in Section 2.1, we felt that areas involving highly complex 
systems requiring modeling, analysis, and transformation among different levels of abstraction 
are good candidates that can benefit from EDA technologies. Examples of such areas, often in 
emerging fields, include the following: 

1. Biology systems. Biology will transform into a precise, quantitative, bottom-up, predictive 
discipline, much as physics and engineering did over the last century. Such systems feature 
many individual entities that interact extensively and are organized hierarchically, where 
logical functionality arises from the hybrid interplay of discrete and continuous-time 
dynamics. Understanding how most biological systems work will require numerical and 
Boolean tools for analysis and design, similar to how CAD tools became indispensable to 
VLSI design. In biology, effective leveraging of, e.g., computational, abstraction and 
verification techniques from EDA, will be critical for catalyzing progress in core science 
areas such as systems and synthetic biology.  
• System biology captures interactions of discrete molecular elements (genes, proteins, 

etc.) that lead to collective properties at multiple levels (metabolic function, organ 
function, etc.). The outcome might be a predictive network hypothesis (the biological 
circuit) that correlates system behavior to lower-level structures.  

• Synthetic biology focuses on modification of biological systems at the molecular level 
to achieve new functions, such as bacteria that can attack cancer cells, or to lead to new 
bio-fuels. The EDA community has already made key contributions (e.g., automated 
abstraction techniques to improve simulation efficiency, applying BDD technology to 
accelerate drug design, oscillator phase macro-models for quantitative understanding of 
circadian systems, etc.). This trend will accelerate using compelling aspects of EDA 
(deep foundational underpinnings and tools for large-scale systems) to enable 
fundamental progress and new discoveries in the core science area of biological 
systems. 

2. Emerging computing/communications/storage fabrics and manufacturing substrates. 
Nano-electronics, nano-photonics, nano-electromechanical systems, 3  and flexible 
electronics,4,5 where diversity of functionality, manufacturability, variability, and reliability 
provide challenges and opportunities for modeling, analysis, synthesis, and integration. 

3. Analysis, characterization, and potential design of hybrid electronic/biological 
systems. Examples include biological neural networks integrated digital and analog 
electronics-based stimuli and readouts.  

4. Cyber physical systems. Such systems consist of the interaction of vast numbers of 
embedded systems, often requiring real-time control, such as intelligent transportation 
systems. 

5. Datacenter design and optimization. It is increasingly important yet difficult to address 
performance, energy, reliability, interconnect, and cooling issues involving thousands to 

                                                
3 Korkin, Anatoli; Rosei, Federico (Eds.), Nanoelectronics and Photonics: From Atoms to Materials, Devices, and 
Architectures, Springer, 2008 (ISBN: 978-0-387-76498-6). 
4 FlexTech Alliance: http://www.flextech.org/. 
5 T.-C. Huang and K.-T. Cheng, “Design for Low Power and Reliable Flexible Electronics: Self-Tunable Cell-Library 
Design,” IEEE/OSA Journal of Display Technology (JDT), Vol. 5, Issue 6, June 2009. pp. 206-215. 
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millions of entities (servers, storage, and I/Os) in a modern large-scale datacenter under a 
dynamic workload. 

6. Software systems.6 These are especially relevant in the following two areas: 1) scalable 
and more precise large-scale software analysis, and 2) tools and methodologies to extract 
and manage concurrency. Current EDA technology has supported well the high degree of 
concurrency in IC and electronic system designs.  

This list can be viewed as an initial recommendation for applying EDA techniques to 
adjacent/emerging fields, but it is by no means meant to be exhaustive. There are more 
candidates. For example, the workshop attendees discussed the possibility of applying EDA 
technologies to the design and analysis of social networks, and to the design and analysis of 
quantum information processing systems, especially quantum communication and quantum 
cryptography. However, the applicability and benefits of EDA technology to these fields are less 
certain (in comparison to other techniques that address problems in these fields). Therefore, 
these are not included in the initial list of recommendations from the workshop. Further joint 
investigations would be needed with other domain experts from physics, information science, 
etc., to develop a sharper focus and a more convincing justification, and to establish a 
consensus on feasibility and identify verifiable order-of-magnitude improvements.  

The most readily transferable EDA assets to adjacent/related disciplines include: 

•  Modeling and analysis at multiple levels of abstraction  
•  Synthesis and transformation with optimization 
•  Validation of functional and structural properties as well as performance requirements 
•  Use of formal methods 

The vast knowledge accumulated in these areas for solving IC and electronic system design 
problems can be applied rather directly to solve any of the new applications listed. 

6.  Educational Perspective 
There is an apparent discrepancy between new graduate students from the U.S. and those from 
overseas in terms of their exposure to EDA. In the U.S. there is little teaching of core EDA topics 
at the undergraduate level—like logic synthesis, physical design, simulation (discrete and 
analog), testing, and formal verification. More seems to be done at leading universities overseas 
at the undergraduate level. Consequently, fewer domestic students apply to graduate schools in 
this area, and some who might have been attracted by the subject matter are lost to other 
disciplines. The workshop attendees agreed that a good design background is important in EDA, 
and for the most part, such courses are being offered. However, these mainly teach the use of 
canned CAD tools and cannot cover much about EDA algorithm topics in any depth. There was 
a feeling that a good senior-level introductory CAD class could be developed and offered more 
broadly in the U.S. universities.  

Exactly what subset to teach is a real challenge, because EDA is a very broad and 
interdisciplinary field, and continues to expand; e.g., embedded systems is a relatively new topic 

                                                
6 J. R. Larus, T. Ball, Manuvir Das, R. DeLine, M. Fahndrich, J. Pincus, S. K. Rajamani, R. Venkatapathy, “Righting 
Software,” Software, IEEE Publication, Vol. 21, Issue 3, May-June 2004, pp. 92-100. 
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of EDA. An ideal undergraduate course should bring out this breadth, but should avoid being 
just an enumeration of disparate topics; rather it should emphasize a set of problem areas which 
contain common underlying algorithmic themes. This would allow exposure to some algorithms 
in depth and give a flavor of the algorithmic and theoretic foundations of EDA. 

At the graduate level, very few universities have the manpower to cover all of EDA since there 
are so many areas and topics. To emphasize this, the skill sets needed by an employer in the 
EDA field were used to analyze the kinds of skills and knowledge that should be taught. The 
graph shown in Figure 1 was used as a guide. The top layer lists the set of products that are 
part of an EDA companyʼs current offerings. These include extraction, simulation, static timing 
analysis, place and route, synthesis, engineering change, and formal verification. The next 
layers of the graph (oval nodes) show software packages that are part of subroutines used in 
these tools. For instance, synthesis needs timing analysis, placement, logic synthesis and 
model checking. Extraction needs function-approximation methods, PDE solvers, model order 
reduction, and machine learning.  The next layer lists the academic disciplines required by the 
people who implement state-of-the-art tools in the listed areas. For example, discrete 
optimization is used in machine learning, placement, routing, search, and logic optimization. The 
layer at the bottom categorizes the underlying mathematics as continuous and discrete. 

 

It was informative to look at a similar graph for some of the adjacent or emerging technologies 
that might be part of the future. That graph differed only in the first layer and the 
interdependences. Some of the future technologies listed were multi-domain micro-systems 
(such as micro-mechanics), new device and process modeling, software verification, systems 
biology, parallel computation, etc.  Many of the disciplines that have been required in EDA are 
still fundamental and form the basis for future technologies. In addition, the types of complexities 
met, and the scale of the problems to be addressed, will be similar to those already encountered 
in EDA and already solved to some extent. 
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The conclusion is that training in EDA fundamentals and experience with EDA-scale problems 
are required for continuing technological innovations. Of course, not all of the domain 
knowledge needs to be taught by EDA personnel and certainly existing courses in other parts of 
EE and CS should be utilized as part of a graduate program. Even for the main core EDA 
courses, there are neither the numbers of professors nor students to warrant courses being 
taught each year. A suggestion was that a graduate curriculum in EDA should offer relevant in-
depth courses in alternate years. In addition, it was suggested that there be a definite movement 
towards “nano-widget” courses (covering nano-wires, nano-switches, nano-memories, etc.) 
where students are encouraged to take these courses and professors are encouraged to 
participate, prepare and adapt EDA material which would supplement such courses. The EDA 
workshop group noted that in Europe, fewer actual graduate courses are taught because the 
education depends more on self-study, seminars, and learning while doing the research. 
However, it was not recommended that the U.S. take this approach because we felt that it is an 
educational advantage to offer a large variety of courses to graduate students. 

On another note, in the past NSF and DARPA jointly funded MOSIS. MOSIS is a program 
providing access to fabrication of prototype and low-volume production quantities of integrated 
circuits. It lowers the cost of fabrication by combining designs from many customers onto multi-
project wafers (MPW). The demise of this funding has been a serious impediment for advancing 
EDA education in universities, and to a certain extent, in research as well (more so at smaller 
universities). While the expenses for funding such a program have gone up dramatically, in 
order to maintain U.S. competitiveness it would be important to resurrect this support. While 
funding this could be expensive, NSF mechanisms that support infrastructure could be used. 
These include the CISE Computing Research Infrastructure (CRI) program, the NSF-wide Major 
Research Instrumentation (MRI) program, and the office of Cyber-Infrastructure (OCI).  NSF 
MOSIS funds for the use of the DARPA secure foundry, or even foreign foundries could be 
investigated. 
 
Another topic discussed at the workshop was the need to combat negative perceptions and 
negative but realistic observations about the EDA field. Some of these are:  

• Currently, many EDA companies are hurting financially, and job opportunities are down. 

• EDA summer internships are very tight. 

• Venture capital for start-ups in EDA has decreased significantly. These have been a vital 
component of EDA and have served as major centers for research and development and 
employment of PhDs.  

• Faculty positions in EDA are tight, aggravated by the difficulty of obtaining funding to support 
research and students. 

• Student interest in EDA as a career has decreased in recent years. 

• There are reduced industrial research efforts in EDA with the dissolution of high-quality 
research groups at Cadence and Synopsys, while the large system design companies have 
throttled back on the research components of their activities. 

• Transition of academic research to industry is much harder than it used to be. Technologies 
are more complex and it is harder to get new ideas into the sophisticated and mature 
software offered by EDA vendors. 
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On the positive side are the following factors:  

• EDA will not go away and cannot stagnate. It is absolutely necessary for the support of the 
design of complex systems such as micro-chips. EDA expertise is needed by EDA software 
companies and by large system-design houses. Start-ups will continue to be valuable in 
finding niche applications and researching solutions, and nurturing core EDA technologies 
as well as emerging ones. These should see a resurgence as the economy improves. 

• Cooperation between industry researchers and developers and university faculty and 
students remains very high, probably among the highest among any discipline within 
computer science/engineering. 

• As technology shrinks, the problems get harder, so not less but more EDA activity is 
required. This increased complexity puts more emphasis on modeling, model reduction, 
abstraction, etc.—techniques in which expert EDA personnel are well versed. 

• EDA engineers are well paid, apparently better than most other types of engineers. 
Moreover, if the trend of fewer students entering the field continues, then supply and 
demand will assert itself; demand and salaries will increase. 

• EDA training in its various disciplines, including complex and large problem solving, will be 
valuable as new growth areas come into play—such as nano-technologies, biology and 
other life science applications, new energy technologies, new energy conservation methods 
such as smart buildings, and maybe even the financial sector.  Some of these are listed in 
the preceding section. Indeed, we see that students with EDA backgrounds were hired into 
these sectors. 

• Aside from the new emerging hot areas, EDA continues with its own hot areas, such as 
system-level design, embedded software, design for manufacturing including lithographic 
and scaling problems, issues of robustness and unreliable components, parallelism, design 
and application of many-core (1000+) processors, application of probabilistic methods to 
enhance scaling of algorithms and problem solutions, and new methods for derivative and 
incremental design. 

The bottom line is that EDA continues to have its hot and exciting areas with lots of new 
technology on the horizon (nano, bio, optical, etc.). Tremendous but exciting challenges are 
looming. EDA provides a very flexible foundation for solving future problems in the design of 
complex and large systems, with many ideas transferable to other fields, and researchers are 
still well paid. Future students should look down the road four to five years and keep these 
aspects in mind for when they might expect to graduate. EDA professors need to convey the 
idea that EDA is more than just supporting semiconductor implementation flows; it is broadly 
about the optimization, implementation and verification of complex systems using deep 
knowledge of an underlying technology. 

7.  Theory and EDA (Re-Engaging the Theory/Algorithm Community 
with EDA Research) 
 
The theory/algorithm community has had a long history of involvement with EDA efforts, dating 
back to VLSI work in the 1980s. Floorplanning and layout/routing problems, among others, were 
studied extensively. Over time, many of the key algorithmic questions in these areas were either 
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resolved, or reduced to hard (and open) problems, and the strong initial connections between 
the communities became weaker.  
 
Current evolution of EDA and theoretical methods suggests a number of directions for fruitful 
collaborations between the algorithms and EDA communities: 
 

1. The effectiveness of SAT solvers. In the EDA community, SAT solvers have been 
engineered to the point where SAT, rather than being viewed as a hard NP-Complete 
problem, is seen as an "easy" subroutine used to reduce other hard problems. However, we 
do not yet have a clear understanding of why the SAT instances encountered in EDA 
problems are easier to solve. Such a study has both theoretical and practical merit. From a 
theoretical perspective, a better understanding of “easy” instances of SAT will naturally 
further develop our understanding of algorithms in the exponential time regime. This is an 
area that has been sorely underdeveloped in the algorithms community. EDA applications 
provide both a test-bed of instances, as well as concrete applications for this work. In 
related work, there has been extensive research on determining the threshold for random 
SAT. Specifically, researchers have looked into determining the precise ratio of variables to 
clauses to determine the exact point above which a random SAT formula is almost always 
satisfiable, and below which it is almost always not satisfiable. Although random instances 
are not likely to be the same as those encountered in practice, the insights gleaned from 
this research are likely to be very useful. 

2. New algorithm design paradigms for EDA applications.  Randomization and 
approximations have been among the most exciting developments in the realm of algorithm 
design over the past 20 years. Randomization allows the design (usually) of very simple 
and practical algorithms with strong (probabilistic) guarantees on performance. Many 
problems in the EDA pipeline include elements like state space exploration, or searches in 
high-dimensional parameter spaces. These problems can benefit greatly from randomized 
methods. Repeatability is an important concern for such applications, and this issue should 
be kept in mind when designing randomized algorithms (proper seed/trace management 
can address this issue quite easily). Approximation techniques are also a powerful way of 
obtaining guaranteed quality bounds for an optimization in an efficient manner. 
Approximation techniques are quite mature, and could be brought to bear on a number of 
the problems discussed. Another issue is that of incremental (or progressive) methods. The 
“waterfall” model of EDA pictures the design process as a pipeline with outputs from a 
phase progressively feeding into the next. It is important when operating such a pipeline 
that small changes made in one stage do not cause drastic changes in the final design. 
Incremental (and streaming) methods in algorithms are designed to adapt solutions to slight 
changes in data. Progressive methods are designed to provide better quality solutions as 
more time is invested in the computation. These two paradigms could benefit EDA pipeline 
design immensely. 

3. New computational models. EDA systems are very compute-intensive, especially in the 
verification stages. Desktop computers now typically have several levels of caches, and are 
rapidly migrating to a multicore architecture which combines parallelism and a caching 
hierarchy. Efficiency of algorithms under these new architectures requires attention to 
cache efficiency and parallelism in addition to the traditional measure of the number of 
operations executed by the algorithm (i.e., the sequential running time). It is also desirable 
for the code to be portable across different architectures, while maintaining efficiency. The 
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cache-oblivious setting offers a simple and attractive model for sequential portable cache-
efficient algorithm design, and many provably efficient algorithms have been designed in 
this model and experimentally run efficiently on modern uniprocessors with a cache 
hierarchy. In the last couple of years, attention has turned to modeling multicores effectively, 
and some promising results have been developed for basic algorithms in the theory 
community. EDA would benefit from incorporating efficient cache-oblivious 7 , 8 , 9  and 
multicore10,11 techniques into EDA algorithms. This holds the promise of much faster parallel 
multicore implementations for EDA problems than currently exist, and could extend the 
scale of problems that we can feasibly solve quite significantly. 

4. New classes of algorithms. New classes of algorithms are needed in all of EDA. These 
include sub-linear algorithms, incremental algorithms, and the cache-oblivious and 
multicore algorithms mentioned above. Sub-linear algorithms would be very beneficial in 
EDA in cases where a large number of candidate solutions need to be examined to 
determine if they satisfy a given property. Often in such cases, very fast (sub-linear time) 
algorithms can reject any candidate solution that is significantly ”far” from the desired 
property. The use of such algorithms could help to speed up EDA computations quite 
significantly. Incremental and fully dynamic algorithms12,13 are another class that has been 
well studied in theoretical algorithm design, and they hold much promise for EDA. Here, 
when components are added or modified in a large design, one seeks algorithms that 
incorporate the change in time that is much smaller than the size of the design. These 
algorithms typically run in  time that is a function of the size of the change being made, and 
a very slow-growing function of the size of the design. In fully dynamic algorithms, most 
incremental and decremental changes are allowed. Many very fast fully dynamic algorithms 
have been developed for basic problems, such as graph connectivity and minimum 
spanning tree. This is an area that potentially could speed up EDA algorithms significantly. 

5. Use of EDA benchmarks. Engagement of theorists through EDA benchmarks. EDA 
research generates large-scale benchmarks (e.g., SAT instances arising from verification) 
that are of value to the algorithms community. This engagement can help provide a better 
formal understanding of effective EDA algorithms. 

6. Robustness in design. The theory community can provide insights into design techniques 
with formally provable robustness properties, even in the face of security attacks. 

                                                
7 M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran, “Cache-Oblivious Algorithms. In Proc. of the 40th IEEE 
Symposium on Foundations of  Computer Science (FOCS),” pages 285-297, 1999. 
8 L. Arge, M. Bender, E. Demaine, B. Holland-Minkley, and I. Munro, “An Optimal Cache-Oblivious Priority Queue and 
Its Application to Graph Algorithms,” SIAM Journal on Computing, Volume 36, Issue 6, pages 1672-1695, 2007. 
9  R. Chowdhury and V. Ramachandran, “The Cache-Oblivious Gaussian Elimination Paradigm: Theoretical 
Framework, Parallelization and Experimental Evaluation,” In Proc. ACM Symposium on Parallelism in Algorithms and 
Architectures (SPAA), pages 71-80, 2007. 
10 R. Chowdhury and V. Ramachandran, “Cache-Efficient Dynamic Programming Algorithms for Multicores,” Proc. 
ACM SPAA, 2008, pages 207-216. 
11 L. G. Valiant, “A Bridging Model for Multi-Core Computing,” In Proc. 16th European Symposium on Algorithms 
(ESA), volume 5193, pages 13--28, 2008. 
12 Holm, K. de Lichtenberg, M. Thorup, “Poly-Logarithmic Deterministic Fully-Dynamic Algorithms for Connectivity, 
Minimum Spanning Tree, 2-Edge, and Biconnectivity,” Journal of the ACM, volume 48,  pages 723-760, 2001. 
13 C. Demetrescu and G.F. Italiano, “A New Approach to Dynamic All Pairs Shortest Paths,” Journal of the ACM, 
volume 51, pages 968-992, 2004. 
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7. Statistical design. With statistical variations playing an increasingly important role in 
design, there are opportunities in new techniques for modeling, analysis, and design 
(optimization) with statistical variations. 

 
8.  Recommendations to NSF  
Based on the discussions presented in the preceding sections, the EDA workshop would like to 
make the following recommendations for improving DA programs in the future. 

8.1  Research Programs 
1. New funding programs to support mid-scale or large-scale research efforts that 

couple design with EDA.  Many workshop attendees pointed out that current DA 
researchers no longer have direct interactions with circuit/system designers.  Thus they do 
not have first-hand experience with the new design problems nor direct feedback on the 
fruitfulness of their research.  However, modern system-on-a-chip designs in nano-scale 
technologies require design teams of substantial size.  Therefore, it is very important to 
create large funding opportunities to support innovative design projects and couple them 
with leading-edge DA researchers.  Such funding may be established jointly by the 
Experimental System Program and the DA Program at NSF CISE. 

2. New funding programs to support joint research programs between research groups 
from universities, commercial EDA companies, and large systems houses. This 
would alleviate some of the recently diminished research in EDA.  

3. New funding programs to support shared infrastructure for design and design 
automation. This would provide additional collaborations between industry and academia. 
However, significant resources are needed at the university which would produce non-
commensurate research benefits. (It was pointed out that infrastructure development can be 
done by university groups, even with limited industrial support). The NSF CRI/MRI 
programs exist to help with this, but they need to be better utilized. 

4. New funding to support exploration of DA for emerging areas. NSF should 
substantially increase its funding to the DA program so that it can form partnerships with 
other research programs in NSF to explore the new frontier for DA, in particular, with the 
following initiatives: 

• Joint program with the CPS program to explore design automation for cyber physical 
systems. 

• Joint program with architecture and networking programs to explore data center design 
and optimization. 

• Joint program with the software division to investigate design automation techniques 
for scalable and more precise large-scale software analysis, and tools and 
methodologies to extract and manage concurrency.  

• Joint programs with biological sciences to initiate programs in design automation for 
system biology and synthetic biology.  
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• Joint programs with the Engineering Directorate to explore design automation for    
emerging computing/communications/storage fabrics and manufacturing substrates. 

5. New funding to support interaction between DA and theory communities, as well as 
interaction between DA and mathematical sciences.  Such collaborations do exist, but 
are done in an ad hoc fashion.  A well-formalized program within the DA program will 
greatly facilitate such collaborations. 

8.2 Education Programs 
1. Support for the development of a senior-level EDA course. This would emphasize the 

underlying algorithmic and theoretic foundations of EDA, while motivating EDAʼs breadth 
and flexibility with specific interesting applications. Materials might be broadly submitted by 
many faculties to a central PI who would meld the contributions into a viable semester 
course and make the materials available online. 

2. Support from NSF to develop shared courseware infrastructure in EDA. Some faculty 
members have had exposure to connexions (cnx.org), an open platform for course sharing, 
which might be utilized. 

3. An increased post-doc program to alleviate the lack of research positions for new 
graduates. Such a program was perhaps part of the stimulus effort, but was quite limited 
and not specific to EDA.  

8.3 Collaboration with Industry 
1. An enhanced program to support longer-term faculty/industry interactions. A tight 

connection with industrial reality and practice has always been critical in EDA. IP houses 
and the IDMs (integrated device manufacturers) jealously guard their data (design data, test 
data, etc.) while the costs of fabrication in the latest technologies will be tremendous. 
Access to technologies is important for academic research. This can be seeded by 
enhanced faculty stays in industry or conversely, visits by technical leaders from industry to 
academia. There needs be a commitment by industry to implement designs for the purpose 
of outside research. This could be enabled by matching NSF and industry contributions. In 
the Engineering Directorate there is a GOALI program to enable this; perhaps a similar 
program is needed for CISE. 

2. An enhanced program to support summer students working at EDA companies.  
Students would be located physically at the company. Proposals for funding would be a 
joint effort between a faculty member and a research staff person at the company. This 
program could include small start-ups as well as EDA vendors and large system design 
houses. 

3. A program to help faculty members and graduate researchers spin off start-ups to 
commercialize successful research projects. This would be similar to a SBIR program, 
but more focused on EDA. The goal would be to help cross the “death valley”—from a 
research paper or prototype to the first customer adoption, so that VCs or the large EDA 
companies could take over from there. 

4. A program to help marry faculty to existing start-ups (related to the above). This would 
encourage new ventures in EDA-type activities. 



 

 26 

We estimate that a 2.5X increase in the current funding level is needed to support these new 
initiatives. Part of it can hopefully be shared with other programs in CISE or other directorates.  
We also hope to see continued partnership and cost-sharing with industry, such as the multi-
core program with SRC. 
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Appendix: Workshop Organization and Schedule 

 
This NSF-sponsored workshop on EDA was held on July 8 and 9, 2009 in Arlington VA. There 
were two invited keynote addresses and 19 invited speakers.  

Keynote Talks 
1. The Brave New Old World of Design Automation Research, Ralph Cavin and Bill Joyner 

(SRC), and Wally Rhines (Mentor Graphics) 
2. Future IT Infrastructure Research Challenges: An HP Labs View, Prith Banerjee (HP) 

 
Invited Talks 

1. The Future of Electronic Design Automation: Methodology, Tools and Solutions, Sharad 
Malik, Princeton  

2. EDA—Electronic Design Automation or Electronic Design Assistance?, Andreas 
Kuehlmann, Cadence Design Systems 

3. Front-End SoC Design: The Neglected Frontier, Arvind, MIT  
4. EDA Challenges in Systems Integration, Jochen A. G. Jess, Eindhoven University 

(emeritus) 
5. Is Todayʼs Design Methodology a Recipe for a "Tacoma Narrows" Incident?, Carl Seger, 

Strategic CAD Labs, Intel Corp.  
6. Statistical Model Checking of Simulink Models, Edmund M. Clarke, CMU  
7. Deconstructing Concurrency Heisenbugs, Shaz Qadeer, Microsoft  
8. Test and Validation Challenges in the Late-Silicon Era, Tim Cheng, UC Santa Barbara 
9. A Faulty Research Agenda, Rupak Majumdar, UC Los Angeles 
10. Numerical Modeling and Simulation for EDA: Past, Present and Future, Jaijeet 

Roychowdhury, UC Berkeley 
11. Analog CAD: Not Done Yet, Rob A. Rutenbar, CMU 
12. A Flat Earth for Design and Manufacturing, Jason Hibbeler, IBM 
13. Collaborative Innovation of EDA, Design, and Manufacturing, Jyuo-Min Shyu, National 

Tsing Hua University  
14. From Computability to Simulation, Optimization, and Back, Igor Markov, University of 

Michigan  
15. Working Around the Limits of CMOS, Mary Jane Irwin, Penn State University  
16. More Mooreʼs Law Through Computational Scaling—and EDAʼs Role, David Z. Pan, 

University of Texas at Austin  
17. Robotics-Based Fabrication and Assay Automation for In Vitro Diagnostics Technologies, 

Jim Heath, Caltech  
18. Synthetic Biology: A New Application Area for Design Automation Research, Chris Myers, 

University of Utah  
19. EDA and Biology of the Nervous System, Lou Scheffer, Howard Hughes Medical Institute 
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These talks took place on July 8. Abstracts and PowerPoint slides can be found on the URL:  
http://cadlab.cs.ucla.edu/nsf09/. July 9 was devoted to breakout sessions which were divided 
into five groups. Each group was asked to focus on a specific set of questions and a topic, 
although participants were encouraged to contribute to any of the topics during their discussions. 
The separate groups focused on the following topics.  

1.  EDA Past, Present and Future Support. The group consisted of P. Mazumder (NSF— 
leader),  W. Joyner (SRC), J. Roychowdhury (Berkeley), C. Myers (Utah), E. Clarke (CMU), 
R. Rutenbar (CMU),  and S. Venkatasubramanian (Utah). The group focused on providing 
a historical perspective and also discussed the funding situation for EDA. 

2. Research Opportunities and Interaction with Industry. The group members consisted 
of Arvind (MIT), S. Basu (NSF), J. Hibbeler (IBM), R. Majumdar (UCLA), S. Malik 
(Princeton—leader), L. Scheffer (Howard Hughes Medical Institute), C. Seger (Intel), J-M. 
Shyu (NTHU Taiwan). The group focused on the general theme of looking at the future and 
discussing challenges and methods. 

3. EDA for Emerging/Adjacent Technologies. This group consisted of Jason Cong 
(UCLA—leader), Prith Banerjee (HP), Tim Cheng (UCSB), Jim Heath (Cal.Tech.), Igor 
Markov (U. Mich.), Shaz Qadeer (Microsoft), Vijaya Ramachandran (UT Austin), and 
Lenore Zuck (NSF). The group focused on an understanding of EDA and its applicability to 
emerging/adjacent fields. Discussions were centered on giving a more precise definition of 
EDA, identifying emerging areas, and those aspects of EDA readily transferable to adjacent 
areas.  

4. Educational Aspects. This group consisted of Robert Brayton (UC Berkeley—leader), 
Mary Jane Irwin (Penn State), Andreas Kuehlmann (Cadence), Jochen Jess (Eindhoven), 
and David Pan (UT Austin). The group concentrated on the following educational topics 
during the discussion: core curriculum for EDA, advice for new students, how to sell EDA 
and combat misconceptions, good news and bad news for EDA, put situation of EDA 
industry in perspective. 

5. EDA and Theory. This group consisted of Richard Lipton (Georgia Tech), Vijaya 
Ramachandran (UT Austin), and Suresh Venkatasubramanian (U. Utah). They were tasked 
with listening to the first dayʼs talks with the purpose of identifying areas where computer 
science theorists and EDA personnel can effectively collaborate.  

 
After the groups met on the second day, the workshop reconvened to hear a summary of the 
reports of the sessions. Later, these groups wrote up their discussions and conclusions; these 
form the main parts of this report.  
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