
Lecture — Software Engineering

CHAPTER 01
THE SCOPE OF SOFTWARE

ENGINEERING

Lecture — Software Engineering

Topics
● Introduction
● Historical Aspects
● Economic Aspects
● Maintenance Aspects
● Requirements, Analysis, and Design Aspects
● Team Development Aspects
● Why There is No Planning Phase
● Why There is No Testing Phase
● Why There is No Documentation Phase
● The Object-Oriented Paradigm
● The Object-Oriented Paradigm in Perspective
● Terminology
● Ethical Issues

Lecture — Software Engineering

Reference
● Schach, S.R. (2010). Object-Oriented and Classical Software

Engineering, Eighth Edition. McGraw-Hill, ISBN: 978-0-07-
337618-9.

Introduction

● Software engineering is a discipline whose aim is the
production of fault-free software, delivered on time and
within budget, that satisfies the user’s needs. Furthermore,
the software must be easy to modify when the user’s needs
change.

● Scope of software engineering is extremely broad
● Examine different aspects

Historical Aspects

● A NATO study group in 1967 coined the term software
engineering

Building software is similar to other engineering tasks
● Software engineering should use the philosophies and

paradigms of established engineering disciplines to solve the
software crisis

Quality of software generally was unacceptably low
Deadlines and budgets were not being met

● Despite many success stories, a large proportion of software
products still are being delivered late, over budget, and with
residual faults.

● Studies by Standish Group
Research firm that analyzes software development projects

Historical Aspects

● Study of 280,000 development projects completed in 2000
Only 28% of the projects were successfully completed

● Study of 9,236 development projects completed in 2004
Only 29% of the projects were successfully completed

● Study completed in 2006
Only 35% of the projects were successfully completed

● Figure 1.1

Historical Aspects

● Survey conducted by the Cutter Consortium in 2002
Astounding 78% of information technology organizations involved
in disputes that ended in litigation
In 67% of those cases, the functionality or performance of the
software product did not meet up to the claims of the software
developers
In 56% of those cases, the promised delivery date slipped
several times
In 45% of those cases, the faults were so severe that the
software product was unusable

● A software engineer has to acquire a broad range of skills
Both technical and managerial skills
Skills applied to every step of software production

Economic Aspects

● Software engineer is interested in techniques that make
sound economic sense

The cost of introducing new technology into an organization
The cost of maintenance

Maintenance Aspects

● Maintenance is described within the context of the software
life cycle

● Life-cycle model — Description of the steps performed when
building a software product

Many different models
● Phases — Life-cycle model broken into a series of smaller

steps
Easier to perform a sequence of smaller tasks
Number of phases varies from model to model

● Life cycle of a product — Actual series of steps performed
on the software product

From concept exploration through final retirement
In Contrast to the life-cycle model (a theoretical description)
Phases of the life cycle may not be carried out as specified

Maintenance Aspects

● Although there are many variations, a software product goes
through six phases

(1) Requirements phase
Concept is explored and refined
Client’s requirements are elicited

(2) Analysis (specifications) phase
Client’s requirements are analyzed and presented in the form of
the specification document (“what the product is supposed to
do”)
Software Project Management Plan is drawn up, describing the
proposed development in detail

(3) Design phase
Two consecutive processes of architectural design (product is
broken down into modules) and detailed design (each module is
designed)

Maintenance Aspects

Resulting in two design documents (“how the product does it”)
(4) Implementation phase

Various components undergo coding and testing (unit testing)
The components are combined and tested as a whole
(integration)
When the developers are satisfied that the product functions
correctly, it is tested by the client (acceptance testing)
Ends when product accepted by client and installed on client’s
computer

(5) Postdelivery maintenance
All changes to product after delivery
Includes corrective maintenance (software repair): removal of
residual faults while leaving the specifications unchanged and
enhancements (software updates): changes to the specifications
and the implementation of those changes

Maintenance Aspects

Two types of enhancements are perfective (changes the client
thinks will improve the effectiveness of the product, such as
additional functionality or decreased response time) and
adaptive (changes made in response to changes in the
environment, such as new hardware/operating system or new
government regulations)

(6) Retirement
Product removed from service
Functionality provided no longer of use to client

Classical and Modern Views of Maintenance
● In 1970s, software production viewed as two distinct

activities of development followed by maintenance
Described as the development-then-maintenance model
A temporal definition (an activity is classified depending on when
it is performed)

Maintenance Aspects

● The development-then-maintenance model is unrealistic today
Construction of a product can take a year or more, during which
the client’s requirements may change
Developers have to perform maintenance before product is
installed
Developers try to reuse parts of existing software products

● More realistic: Maintenance is the process that occurs when
software undergoes modifications to code and associated
documentation due to a problem or the need for improvement
or adaptation [ISO/IEC 12207]

An operational definition: Irrespective of when the activity
takes place
Definition adopted by [IEEE/EIA 12207.0]
Postdelivery maintenance is a subset of modern maintenance

Maintenance Aspects

● ISO — International Organization for Standardization
A network of national standard institutes
147 countries
Central secretariat based in Geneva, Switzerland
Published over 13,500 internationally accepted standards

● IEC — International Electrotechnical Commission
A non-profit, non-governmental organization
Prepares and publishes international standards for all electrical,
electronic and related technologies
Manages conformity assessment systems that certify that
equipment, systems or components conform to standards

● EIA — Electronic Industries Alliance
A trade organization
Composed as an alliance of trade associations
For electronics manufacturers in the United States

Maintenance Aspects

● IEEE — Institute of Electrical and Electronics Engineers
An international non-profit, professional organization
For the advancement of technology related to electricity
World’s largest professional association
More than 395,000 members in around 150 countries
Highly cited publications, conferences, technology standards, and
professional and educational activities

The Importance of Postdelivery Maintenance
● False: Bad software products undergo postdelivery

maintenance
Bad software products are thrown away
Good software products are repaired and enhanced

● A software product is a model of the real world
Real world is perpetually changing
Software has to be maintained constantly

Maintenance Aspects

● How much time (money) is devoted to postdelivery
maintenance

Some 40 years ago, approximately two-thirds of total software
costs
Newer data show a larger proportion (70% to 80%)

● Figure 1.3

Maintenance Aspects

● Average cost percentages of the classical development phases
have not changed much

● Figure 1.4

Requirements, Analysis, and Design Aspects

● Cost of correcting a fault increases steeply throughout the
phases

The earlier one corrects a fault, the better
A fault in requirements may also appear in the specifications, the
design, and the code
Studies have shown that between 60% and 70% of all faults
detected in large projects are requirements, analysis, or design
faults
It is important to improve requirements, analysis, and design
techniques

Requirements, Analysis, and Design Aspects

● Figure 1.6

Team Development Aspects

● Most software is produced by a team of software engineers
Team development leads to interface problems among code
components and communication problems among team members
Unless the team is properly organized, an inordinate amount of
time can be wasted in conferences between team members
The scope of software engineering must include techniques for
ensuring that teams are properly organized and managed

● Scope of software engineering is extremely broad
Every step of the software life cycle
Human aspects such as team organization
Economic aspects
Legal aspects such as copyright laws

Why There is No Planning Phase

● Impossible to develop a software product without a plan
Essential to have a planning phase at the beginning of project
Until it is known exactly what is to be developed, an accurate
detailed plan cannot be drawn up

● Three types of planning activities take place
(1) At the beginning of the project, preliminary planning takes place

for managing the requirements and analysis phases
(2) Once what is going to be developed is known precisely, the

software project management plan (SPMP) is drawn up, which
includes the budget, staffing requirements, and detailed
schedule
Earliest when specification document is approved by the client

(3) Through the project, management monitors the SPMP (watch
for any deviation)

● There is no separate planning phase
Planning activities are carried out all through the life cycle

Why There is No Testing Phase

● Checking the software product once it is ready to be
delivered is too late

● Although there are times when testing predominates, there
should never be times when no testing is being performed

● Testing predominates
Toward the end of each phase (verification) and
Before the product is handed over to the client (validation)

● If testing is treated as a separate phase
Danger that testing will not be carried out constantly throughout

● Every software development organization should contain an
independent group, called the software quality assurance
(SQA) group, whose primary responsibility is to ensure that

Product is what the client needs
Product has been built correctly

● Quality — Extent to which software meets its specifications

Why There is No Documentation Phase

● At all times, the documentation of a software product must
be complete, correct, and up to date

Large turnover in personnel in the software industry
● Impossible to perform the steps of a specific phase without

the documentation of the previous phase
● Impossible to test a software product without documents

that state how the product is supposed to behave
● Impossible to perform maintenance without documentation

that describes precisely what the product does

The Object-Oriented Paradigm

● Prior to 1975: No specific techniques
● 1975 to 1985: Structured or classical paradigm
● Unable to cope with the increasing size of software products

Adequate for small-scale (5,000 Lines of Code) and medium-scale
(50,000 LOC) products
Could not scale up to large-scale (500,000 LOC)
Products with 5 million lines of code are not unusual

● Did not live up to the expectations during postdelivery
maintenance

Two-thirds of the budget for postdelivery maintenance
Classical paradigm did not change that

● Either operation (action) oriented or attribute (data) oriented
Not both
Basic components of a software product: Operations of the
product and attributes on which those operations operate

The Object-Oriented Paradigm

● Object-Oriented Paradigm
Considers both attributes and operations to be equally important
Object — A unified software artifact that incorporates both the
attributes and the operations performed on the attributes

● Artifact — A component of a software product
E.g., a specification document, a code module, or a manual

● Strengths of the object-oriented paradigm
(1) Makes maintenance quicker and easier, and the chance of

introducing a regression fault (a fault inadvertently introduced
as a consequence of a change) is greatly reduced

(2) Makes development easier: The close correspondence between
the objects and their counterparts in the real world

(3) Well-designed objects are independent units: The conceptual
independence is termed encapsulation and information hiding
ensures the implementation details are hidden

The Object-Oriented Paradigm

(4) The product consists of a number of smaller, largely
independent units: Reduces the complexity of a software product
A product in the classical paradigm is implemented as a set of
modules, but it is essentially a single unit: Less successful with
larger products

(5) Promotes reuse: Objects are independent entities and can be
utilized in future products

● Object-oriented paradigm has a modified life cycle model
Phase for classical paradigm versus workflow for object-oriented
Terms are distinct

● One of the steps of object-oriented analysis work flow is to
determine classes

Because class is a kind of module, architectural design is
performed during the object-oriented analysis work flow

The Object-Oriented Paradigm

● In classical paradigm, a sharp transition between the analysis
phase and the design phase

From “what to do” to “how to do it”
● In object-oriented analysis, objects enter the life cycle from

the very beginning
Objects are extracted in the analysis workflow
Designed in the design workflow
Coded in the implementation workflow

● Object-oriented paradigm an integrated approach with
smooth transitions

The Object-Oriented Paradigm

● Figure 1.8 and Figure 1.9

The Object-Oriented Paradigm in Perspective

● The issues with object-oriented paradigm
The object-oriented paradigm has to be used correctly (just as
easy to misuse as any other paradigm)
When correctly applied, object-oriented paradigm can solve
some (but not all) of the problems of classical paradigm
The object-oriented paradigm has some problems of its own
(discussed later)
The object-oriented paradigm is the best approach available
today, and it can be superseded by a superior technology in the
future

Terminology

● Client — The individual who wants a product to be built
(developed)

● Developers — Members of team responsible for building the
product

● Internal software development — Both the client and
developers are part of the same organization

● Contract software — Client and the developers are
independent organizations

● User — The person) on whose behalf the client has
commissioned the product and who will utilize the software

● Custom software — Developed for one client
● Commercial off-the-shelf (COTS) software — Multiple copies

of software are sold at much lower prices to a large number
of buyers

Terminology

● Shrink-wrapped software — Earlier term for COTS software
Because of the box containing the material
Nowadays, often downloaded over the World Wide Web

● Clickware — Used for COTS software
● Open-source software — Developed and maintained by a team

of volunteers and may be downloaded and used free of charge
Becoming extremely popular
E.g., Linux operating system, Firefox Web browser, and Apache
Web server
The source code is available to all
With most commercial products only executable version is sold
Can be of high quality: Any user can scrutinize the source code
and report faults
Linus’s Law: “Given enough eyeballs, all bugs are shallow”
“Release early, release often”

Terminology

● Software — Consists of not just the code, but all the
documentation that is an intrinsic component of every project

E.g., specification document, legal documents, manuals
● System analysis — First two phases of traditional software

development (requirements and analysis phases)
● System design — Third phase (design phase)
● Product — A nontrivial piece of software

The end result of a process is a product
● System — The combined hardware and software
● Methodology or Paradigm — A component of the software

process as a whole
E.g., object-oriented paradigm
Methodology — Science of methods
Paradigm — A model or a pattern

Terminology

● Technique — A component of a portion of the software
process

E.g., coding techniques, documentation techniques
● Mistake, fault, failure, error: Defined in IEEE Standard

610.12
A programmer makes a mistake
The consequence of that mistake is a fault in the code
Executing the software product results in a failure (observed
incorrect behavior)
An error is the amount by which a result is incorrect

● Defect — Generic term that refers to a fault, failure, or
error

Minimize the use
● Bug — Term for a fault

Minimize the use

Ethical Issues

● Most societies for professionals have a code of ethics to
which all its members must adhere

They express similar sentiments
Vital for the future of the professions to rigorously adhere to
such codes

● Software Engineering Code of Ethics and Professional
Practice

● Developed by two major societies for computer professionals
Computer Society of IEEE (IEEE-CS)
Association for Computing Machinery (ACM) — World’s largest
educational and scientific computing society, delivering resources
that advance computing as a science and a profession

● The standard for teaching and practicing software
engineering

● It is lengthy, and a short version also produced

Ethical Issues

● Software Engineering Code of Ethics and Professional
Practice (Version 5.2)

● Recommended by the IEEE-CS/ACM Joint Task Force on
Software Engineering Ethics and Professional Practices

● Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and
maintenance of software a beneficial and respected
profession. In accordance with their commitment to the
health, safety and welfare of the public, software engineers
shall adhere to the following Eight Principles:

(1) Public: Software engineers shall act consistently with the
public interest.

(2) Client and Employer: Software engineers shall act in a
manner that is in the best interests of their client and
employer, consistent with the public interest.

Ethical Issues

(3) Product: Software engineers shall ensure that their products
and related modifications meet the highest professional
standards possible.

(4) Judgment: Software engineers shall maintain integrity and
independence in their professional judgment.

(5) Management: Software engineering managers and leaders
shall subscribe to and promote an ethical approach to the
management of software development and maintenance.

(6) Profession: Software engineers shall advance the integrity
and reputation of the profession consistent with the public
interest.

Ethical Issues

(7) Colleagues: Software engineers shall be fair to and
supportive of their colleagues.

(8) Self: Software engineers shall participate in lifelong learning
regarding the practice of their profession and shall promote
an ethical approach to the practice of the profession.

