Chemical Sciences

Paper I(PART 'B')
41. Complexes of which of the following metals are used in the treatment of rheumatoid arthritis:

1. Gold
2. Ruthenium
3. Iron
4. Copper
5. Non-heme iron-sulfur proteins are involved in:
6. Electron transfer.
7. Proton transfer.
8. Both electron and proton transfer
9. Oxygen transfer.
10. Active catalytic species for hydroformylation is
11. $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$
12. $\mathrm{HCo}(\mathrm{CO})_{3}$
13. $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$
14. $\mathrm{K}_{2} \mathrm{PtCl}_{6}$
15. The unit of molar absorptivity is:
16.

$\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$
2. $\mathrm{L}^{-1} \mathrm{~mol} \mathrm{~cm}^{-1}$
3. $\mathrm{L} \mathrm{mol} \mathrm{cm}{ }^{-1}$
4. L mol cm
45. Gelatin is added đuring polarographic measurements to:
reduce streaming motion of falling mercury drop

- 2. -increase I_{d}

3. \quad increase $\mathrm{E}_{1 / 2}$
4. eliminate residual current
5. The element that shows both +3 and +4 oxidation states is:
6.
7. Promethium
8. Gadolinium
9. Holmium
10. The number of $3 \mathrm{c}, 2 \mathrm{e} \mathrm{BHB}$ bonds present in $\mathrm{B}_{4} \mathrm{H}_{10}$ is
11. 2
12. 3
13. 4
14. 0
15. \quad In BrF_{3} as a solvent SnF_{4} and KF behave as
16. acid and base, respectively
17. base and acid, respectively
18. acids
19. bases
20. The effective nuclear charge $\left(Z^{*}\right)$ for the $1 s$ electron of ${ }_{8} \mathrm{O}$ according to Slater's rules is nearly
21. 4.55
22. $\quad 3.45$
23. $\quad 7.65$
24. 5.45

25. Among the species $\mathrm{O}_{2}^{+}, \mathrm{O}_{2}$ and O_{2}^{-}, the order of first ionfzation energy is
26.

51. CO bond order is lowest in

1. 4 uncoordinated CO
2. , CO bonded to one metal

- 3. CO bridging two metals

4.

CO bridging three metals
52. The most unstable species among the following is
1.
$\mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$
2. $\quad \mathrm{Ti}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}$
3. $\mathrm{Pb}\left(\mathrm{CH}_{3}\right)_{4}$
4. $\quad \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$
53. In which of the following species quadrupole bonding is involved?

1. $\mathrm{Mo}_{2}\left(\mathrm{NMe}_{2}\right)_{6}$
2. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
3. $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$
4. $\mathrm{Re}_{2} \mathrm{Cl}_{8}^{2-}$
5. In which one of the following pairs the species have similar geometry?
6. CO_{2} and SO_{2}
7. NH_{3} and BH_{3}
8. $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{SO}_{3}{ }^{2-}$
9. $\mathrm{SO}_{4}{ }^{2-}$ and ClO_{4}^{-}
10. On oxidative addition of O_{2} to $\operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}$, the oxidation state and coordination number of Ir changes, respectively, by
11. 1 and 3
12. 2 and 2
13. 3 and 1
14. 2 and 3
15. In linear metal nitrosyls NO acts as a/an:
16. One electron donior
17. Two electron donor
18. Three electron donor
19. Four electron donor
20. Among the following molecules, the dipole moment is the highest for
21. ${ }^{4} \mathrm{NH}_{3}$ trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ BF_{3}
22.

58. An element 'X' emits successively two β particles, one α particle, one positron and one neutron. The mass and atomic numbers of the element are decreased by, respectively,
1.

4 and 1
2. 5 and 1
3. 3 and 2
4. 3 and 1
59. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}$ recorded at room temperature has

1. One singlet
2. One multiplet
3. Two singlets
4. Two multiplets
5. In the estimation of Fe^{2+} by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ using barium diphenylamine sulfonate as indicator, $\mathrm{H}_{3} \mathrm{PO}_{4}$ is added to
6. maintain the pH of the medium
7. decrease the $\mathrm{Fe}^{2+/ 3+}$ potential
8. increase the oxidizing power of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
9. stabilize the indicator
10. The polymeric species $(\mathrm{SN})_{\mathrm{n}}$ is a / an
11. three dimensional conductor
12. two dimensional conductor
13. insulator
14. one dimensional conductor
15. Among feldspar, muscovite mica and zeolite,
16. all are three dimensional silicates
17. feldspar and zeolite are three dimensional, while muscovite mica is layered
18. feldspar is threedimensional, while zeolite and muscovite mica are layered
19. all are layered silicates
20. The molar absorptivity at $\lambda_{\max }$ is minimum for

21. , $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2}$

- 3. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

4. $\quad\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
5. The acid catalyzed hydrolysis of trans- $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{AX}\right]^{\mathrm{n}+}$ can give cis- product also due to the formation of
6.

square pyramidal intermediate trigonal bipyramidal intermediate pentagonal bipyramidal intermediate face capped octahedral intermediate
65. The total number of lines expected in ${ }^{1} \mathrm{H}$ NMR spectrum of HPF_{2} is $(\mathrm{I}=1 / 2$ for both ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$)

1. six
2. four
3. five
4. three
5. In the inner sphere reduction of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ with $\left.\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right)\right]^{2+}$, the chloride
6. bridges the metal centres only
7. mediates electron transfer only
8. bridges and mediates electron transfer both
9. does not play any role
10. The number of faces and edges in IF_{7} polyhedron are, respectivelly
11. $\quad 15$ and 15
12. 10 and 15
13. 10 and 10
14. $\quad 15$ and 10

15. Among $\mathrm{N}_{2}, \mathrm{~N}_{3}^{-}$, azobenzene and hydrazine, the shortest and longest $\mathrm{N}-\mathrm{N}$ distances are found, respectively, in
16. N_{3}^{-}and hydrozine
17. $\quad \mathrm{N}_{2}$ and azobenzéne
18. N_{3}^{-}and azobenzene
19. N_{2} and hydrazine
20. O_{2} can be converfed to O_{2}^{+}by using

- 1. PtF_{6}

2. $\quad \mathrm{KF}$
3. $\quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
4. $\quad \mathrm{Br}_{2}$
5. Only one absorption band is observed in visible region of spectrum of
6.

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
3. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$
4. VO_{4}^{3-}
71. CFSE of transition metal complexes can be determined by

1. UV-visible spectroscopy
2. IR spectroscopy
3. Microwave spectroscopy
4. NMR spectroscopy
5. Which two among $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-},\left[\mathrm{Cu}(\text { bpy })_{2}\right]^{2+}$ (bpy $=2,2^{\prime}$-bipyridine) and $\left[\mathrm{Mn}(\mathrm{acac})_{3}\right](\mathrm{acac}=$ acetylacetonate anion) show the same spin-only magnetic moment?
6. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}$
7. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Cu}(\mathrm{bpy})_{2}\right]^{2+}$
8. $\left[\mathrm{FeF}_{6}\right]^{3-}$ and $\left[\mathrm{Mn}(\mathrm{acac})_{3}\right]$
9. $\left[\mathrm{Cu}(\mathrm{bpy})_{2}\right]^{2+}$ and $\left[\mathrm{Mn}(\mathrm{acac})_{3}\right]$
10. In aqueous medium a mixture of KI and I_{2} converts thiosulfate to
11. $\quad \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
12. $\quad \mathrm{SO}_{4}{ }^{2-}$
13. $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
14. $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$

15. An exothermic reaction will necessarily follow the condifion
16. $\Delta \mathrm{H}<0$
17. $\Delta \mathrm{H}>0$
18. $\Delta \mathrm{H}=0$
19. $\Delta \mathrm{S}=0$

20. The unit of rate constant (k) for a zero-order reaction is
21.
22.
23.
24.
25. Heating is observed when N_{2} gas at 200 atm is expanded at $\mathrm{T}>600 \mathrm{~K}$. It is because
26.
27. $\quad \mathrm{N}_{2}$ is a real gas
28. Joule-Thomson coefficient is negative
29. Joule-Thomson coefficient is positive
30. Increase in disorder is more if
31. heat is absorbed reversibly at higher temperature
32. heat is absorbed reversibly at lower temperature
33. heat absorbed reversibly is independent of temperature
34. heat absorbed reversibly is independent of phase of the system.
35. The term symbol of Li_{2}^{+}with configuration $\left(1 \sigma_{\mathrm{g}}\right)^{2}\left(1 \sigma_{\mathrm{u}}\right)^{2}\left(2 \sigma_{\mathrm{g}}\right)^{1}$ is
36. \sum_{g}^{+}
37. \sum_{g}^{-}
38. \sum_{g}^{-}
39.

${ }^{2} \sum_{g}^{+}$
79. Which one of the following equations is used for the calculation of equilibrium constant (K) of an electrochemical cell reaction ($\mathrm{n}=$ number of electrons transferred, $\mathrm{F}=$ Faraday constant and $\mathrm{E}^{\circ}=$ standard redox potential)?

1. $\quad \ln K=\left(n F E^{o} / R T\right)$
2. $\ln K=-\left(n F E^{o} / R T\right)$
3. $\ln K=\left(R T / n F E^{o}\right)$
4. $\ln K=-\left(R T / n F E^{\circ}\right)$
5. Cubic close packing of h spheres generates the following number of interstitial sites
6. $2 n$ octahedral and n tetrahedral sites
7. n octaheđral and n tetrahedral sites
8. $-2 n$ octahedral and $2 n$ tetrahedral sites
9. n octahedral and $2 n$ tetrahedral sites
10. ~ The point group symmetry of the molecule $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is
11. $\mathrm{C}_{2 \mathrm{~h}}$
12. $\quad \mathrm{C}_{2 \mathrm{v}}$
13. $\mathrm{D}_{2 \mathrm{~h}}$
14. $\quad \mathrm{D}_{2 \mathrm{~d}}$
15. The point group symmetries of isosceles and equilateral triangles respectively are
16. $\mathrm{C}_{3 \mathrm{v}}$ and $\mathrm{D}_{2 \mathrm{~d}}$
17. $\quad \mathrm{D}_{3 \mathrm{~h}}$ and $\mathrm{D}_{2 \mathrm{~d}}$
18. $\quad \mathrm{D}_{3 \mathrm{~h}}$ and $\mathrm{C}_{2 \mathrm{v}}$
19. $\quad \mathrm{C}_{3 \mathrm{v}}$ and $\mathrm{C}_{2 \mathrm{v}}$
20. The infrared spectrum of CO_{2} exhibits the following number of absorptions:
21. one
22. two
23. three
24. four
25. The first line in the rotational Raman spectra of a diatomic molecule appears with a Stokes shift of $12 \mathrm{~cm}^{-1}$. The Stokes shift for the second line is
26. $36 \mathrm{~cm}^{-1}$
27. $24 \mathrm{~cm}^{-1}$
28. $18 \mathrm{~cm}^{-1}$
29. $20 \mathrm{~cm}^{-1}$
30. Which of the following molecules shows EPR resonance?
31. $\mathrm{H}_{2} \mathrm{O}$
32. O_{2}
33. $\mathrm{H}_{2} \mathrm{O}_{2}$
34. CO_{2}

35. The R branch in the vibrational spectra of AX exhibits a set of equally spaced lines with a separation of $10 \mathrm{~cm}^{-1}$. The rotational constant of AX is
36. $10 \mathrm{~cm}^{-1}$
37. $20 \mathrm{~cm}^{-1}$
38. $5 \mathrm{~cm}^{-1}$
39. $15 \mathrm{~cm}^{-1}$
40. Overtones are observed in the vibrational spectra of diatomic molecules when
41. anharmonicity is large
42. , anharmonicity is absent

- 3. vibration and rotational modes are coupled

4. an alternating electric field is applied
5. Which of the following electronic transitions is disallowed?
6.

$2 . \quad \sigma \rightarrow \sigma^{*}$
3. $\mathrm{n} \rightarrow \pi^{*}$
4. $\delta \rightarrow \delta *$
89. If the Carnot cycle in entropy-temperature diagram looks as below,

S
then the system rejects heat to the surroundings in going from

1. $\mathrm{B} \rightarrow \mathrm{A}$
2. $\mathrm{A} \rightarrow \mathrm{B}$
3. $\mathrm{D} \rightarrow \mathrm{C}$
4. $\mathrm{C} \rightarrow \mathrm{D}$
5. The correlation coefficient $\rho(\mathrm{x}, \mathrm{y})$ for two variables x and y satisfies
6. $-1 \leq \rho(x, y) \leq 1$
7. $-1<\rho(\mathrm{x}, \mathrm{y})<1$
8. $0 \leq \rho(x, y) \leq 1$
9. $0<\rho(x, y)<1$
10. When we introduce anharmonicity in the harmonic vibrator model of a diatomic molecule, the energy-level spacing changes from
11. equal to gradually decreasing
12. gradually decreasing to equal
13. equal to gradually increasing
14. gradually increasing to equal
15. For a one-electron atom with nuclear charge Z, the speed v_{n} of the electron in some n-th stationary orbit satisfies
16.
17. $)$

- 3. $\quad v_{n} \propto Z^{-1}$

4. $\quad V_{\mathrm{V}} \propto Z^{-2}$
5. The optimized variational wavefunction gives
6. all properties and energy of same quality
7. properties better than the energy
8. energy better than properties
9. equal kinetic and potential energy values
10. The commutator [Ly, Lx] has a value equal to
11. zero
12. $-\mathrm{L}_{z}$
13. $-\mathrm{i} \eta \mathrm{L}_{Z}$
14. $-\eta \mathrm{L}_{z}$
15. The following statement is true for any hermitian operator:
16. All eigenvalues are real and non-degenerate
17. All eigenfunctions are real
18. All eigenfunctions are complex
19. All eigenvalues are real
20. A δ molecular orbital of a diatomic molecule is defined by
21. $\mathrm{n}=3$
22. $\quad \ell=2$
23. $\lambda=2$
24. $\mathrm{m}_{\ell}=2$
25. The $2 p_{x}$ hydrogenic orbital has the ϕ-part in its wavefunction of the form 1. $\mathrm{e}^{-\mathrm{i} \varphi}$
26. $\mathrm{e}^{+i \varphi}$
27. $\sin \varphi$
28. $\cos \varphi$
29. Which of the following statements about valence bond (VB) and molecular orbital (MO) theory is false?
30. The VB üses non-orthogonal basis.
31. - The simple MO theory does not include any ionic terms.
32. The VB theory views molecules as composed of atomic cores and bonding valence electrons.

- 4. The MOs can be delocalized over all the atoms.

99. If \hat{A} an operator and $\hat{A} \psi=i \eta \frac{d}{d x}$, then $\hat{\mathrm{A}}^{2} \psi$ is given by
100. $-\eta^{2}\left(\frac{d \psi}{d x}\right)^{2}$
101. $-\eta^{2} \frac{d^{2} \psi}{d x^{2}}$
102. $\eta^{2}\left(\frac{d \psi}{d x}\right)^{2}$
103. $\quad \eta^{2} \frac{d^{2} \psi}{d x^{2}}$

104. If all the energy-levels of a system are given a constant shift by an amount α, the entropy of the system
105. does not change at all
106. changes by the amount of α
107. decreases
108. increases, but irregularly
109. An equimolar mixture of two macromolecules of molar masses 10,000 and 30,000 will have the number average molar mass equal to:
110. $\bar{M}_{n}=10,000$
111. $\bar{M}_{n}=15,000$
112. $\bar{M}_{n}=20,000$
113. $\bar{M}_{n}=25,0 \overline{00}$
114. Addition of a positive catalyst to an exothermic reaction
115. ${ }^{4}$ increases exothermicity and activation barrier
116. decreases exothermicity, but increases barrier increases exothermicity only
117. decreases activation barrier, but does not change the exothermicity.
118. The electrical conductivity of a crystalline solid increases with temperature.

The solid is a

1. superconductor
2. metal
3. semiconductor
4. semimetal
5. $\mathrm{K}_{\text {sp }}$ values for $\mathrm{CuS}, \mathrm{FeS}, \mathrm{PbS}$ and ZnS are $8.5 \times 10^{-45}, 6.3 \times 10^{-18}, 3.4 \times 10^{-28}$ and 1.6×10^{-24}, respectively. If $\mathrm{H}_{2} \mathrm{~S}$ gas is passed through a solution containing these ions with same molar concentration, the ion that will precipitate first is
6. Pb^{2+}
7. Zn^{2+}
8. Fe^{2+}
9. Cu^{2+}
10. The experimental adsorption data of a gas on a solid surface at temperature T exhibits the following variation with pressure. V is the volume of gas adsorbed.

Which of the following statements is true?

1. Heat of coverage varies linearly with temperature
2. Adsorption is multilayer
3. Heat of adsorption is independent of coyerage
4. Complete coverage cannot be determined
5. The second order Bràgg diffraction from the 100 planes of a cubic crystal is equivalent to
6. the second order diffraction from the 200 planes
7. first order diffraction from the 200 planes
8. first order diffraction from the 400 planes
9. first order diffraction from the 100 planes
10. IUPAC name of the compound given below is
11. 4-methylcyclohex-4-enecarboxylic acid
12. 4-methylcyclohex-3-enecarboxylic acid
13. 1-methylcyclohexene-4-carboxylic acid
14. 2-methylcyclohexene-5-carboxylic acid
15. The major product formed in the reaction given below is

16.

2.

3.

4.

109. Cope rearrangement involves

1. $[1,5]$-sigmatropic rearrangement
2. $[4+2]$-cycloaddition reaction
3. $[3,3]$-sigmatropic rearrangement
4. 6π-electrocyclisation reaction
5. The major product formed in the reaction given below is
6.

3.
4.

111. The stereochemical descriptors for the chiral centre and olefin in the compound given below, are

1. $4 R, 2 Z$
2. $4 S, 2 Z$
3. $4 R, 2 E$
4. $4 S, 2 E$
5. In the compound given below, the hydrogens H_{A} and H_{B} are
6. homotopic
7. enantiotopic
8. diastereotopic
9. isotopic
10. An organic compound with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$ exhibits only one signal in the ${ }^{1} \mathrm{H}$ NMR spectrum. The compound is
11. 2,2-dichloropropane
12. 1,2-dichloropropane
13. 1,3-dichloropropane
14. 1,1-dichloroptopane

15. An ${ }^{1}$. ${ }_{6} \mathrm{Cl}_{2}$ exhibits only one
16. The order of $\lambda_{\max }$ in the UV-Vis spectra for the compounds A-C is

17. $\quad \mathrm{A}>\mathrm{B}>\mathrm{C}$

B

C
18. $\quad \mathrm{B}>\mathrm{A}>\mathrm{C}$
19. $\quad \mathrm{B}>\mathrm{C}>\mathrm{A}$
20. $\mathrm{C}>\mathrm{B}>\mathrm{A}$
21. The photochemical Paterno-Büchi reaction is a cycloaddition between
22. two $>\mathrm{C}=\mathrm{C}<$ groups
23. $\mathrm{a}>\mathrm{C}=\mathrm{O}$ and $>\mathrm{C}=\mathrm{C}<$ groups
24. $\mathrm{a}>\mathrm{C}=\mathrm{N}-\mathrm{R}$ and $>\mathrm{C}=\mathrm{C}<$ groups
25. $\mathrm{a}>\mathrm{C}=\mathrm{S}$ and $>\mathrm{C}=\mathrm{C}<$ groups
26. The reaction given below is an example of

27. $\pi_{\pi} 4_{s}+{ }_{\pi} 2_{\mathrm{s}}$ cycloaddition
28. $\pi_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{a}}$ cycloaddition
29. $\pi^{4}{ }_{a}+{ }_{\pi} 2_{s}$ cycloaddition
30. $\pi^{4}+{ }_{\pi}{ }^{2}$ a cycloaddition
31. Which one among the dienes A-D will undergo [3,3]-sigmatropic shift upon heating

A

B

1. A
2. B
3. C
4. D
5. The LUMO of the ground state buta-1,3-diene is

A

2.
3.

1. 888^{8}

2.

$$
t
$$

*
119. The major product formed in the reaction given below is

1.

2.

3.

4.

120. The transformation given below can be achieved using

1. BH_{3}. THF followed by $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{NaOH}$ 2. alkaline $\mathrm{KMnO}_{4} / \mathrm{NaIO}_{4}$
2. pyridinium chlorochromate
3.

121. The base peak in the electrof impact mass spectrum (EI MS) of acetophenone is

1. 120
2. 105
3. 77
4.

65
122. In the reaction given below, the orientation of two bromine substituents in the product is

1. equatorial at both $\mathrm{C}-1$ and $\mathrm{C}-2$
2. equatorial at $\mathrm{C}-1$ and axial at $\mathrm{C}-2$
3. axial at $\mathrm{C}-1$ and equatorial at $\mathrm{C}-2$
4. axial at both $\mathrm{C}-1$ and $\mathrm{C}-2$
5. Cyclohexyl benzyl ether is converted to cyclohexanol using
6. 5% aq. KOH
7. hydrazine hydrate
8. $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$
9. tetrabutylammonium fluoride
10. Which one among the compounds A-D will have highest dipole moment?

11. A
12. B
13. C
14. D
15. The major products formed in the nitration $\left(\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ of aniline and acetanilide are
16. o-nitroaniline and o-nitroacetanilide
17. m-nitroaniline and p-nitroacetanilide
18. $\quad p$-nitroaniline and m-nitroacetanilide
19. m-nitroaniline and m-nitroacetanilide

20. Which one of the following name reactions is an example of atom economy reaction?
21. Wittig reaction
22. Grignard reaction
23. Dieckmann condensation
24. Diels-Alđer reaction
25. The order of nucleophilicity among $\mathrm{PhNH}_{2}, \mathrm{EtNH}_{2}$ and PhNHNH_{2} is

- 1. $\mathrm{PhNHNH}_{2}>\mathrm{PhNH}_{2}>\mathrm{EtNH}_{2}$

2. $\mathrm{EtNH}_{2}>\mathrm{PhNH}_{2}>\mathrm{PhNHNH}_{2}$
3. $\mathrm{PhNHNH}_{2}>\mathrm{EtNH}_{2}>\mathrm{PhNH}_{2}$
4. $\mathrm{EtNH}_{2}>\mathrm{PhNHNH}_{2}>\mathrm{PhNH}_{2}$
5. The order of acid strengths of $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CF}_{3} \mathrm{COOH}$ and $\mathrm{CCl}_{3} \mathrm{COOH}$ is
6. $\mathrm{CCl}_{3} \mathrm{COOH}>\mathrm{CF}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}$
7. $\mathrm{CCl}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CF}_{3} \mathrm{COOH}$
8. $\mathrm{CF}_{3} \mathrm{COOH}>\mathrm{CCl}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}$
9. $\mathrm{CF}_{3} \mathrm{COOH}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CCl}_{3} \mathrm{COOH}$
10. The major product formed in the reaction given below is

11.

2.

4.

130. The most suitable reagent to achieve the transformation, given below, is

1. $\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$
2. MnO_{2}
3. $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$
4. $\mathrm{RuCl}_{3} / \mathrm{NaIO}$
5. An optically active compound A having molecular formula $\mathrm{C}_{6} \mathrm{H}_{12}$ on catalytic hydrogenation gives an optically inactive compound $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$. The compound A is
6. 4-methylpentene
7. 3-methylpentene
3.1)

3,3-dimethylbutene

- 4.

4-methylpentene
132. The reagent suitable for converting oct-4-yne to trans-oct-4-ene is
1.
2. $\mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{H}_{2}$
3. NaBH_{4}
4. $\mathrm{Na} /$ liq. NH_{3}
133. Which one of the following is a polar aprotic solvent?

1. toluene
2. carbon tetrachloride
3. N, N-dimethylformamide
4. acetic acid
5. The major product formed in the reaction, given below, is

6.

2.

3.

4.

135. The major product fornfed in the reaction, given below, is

2.
3.

4.

136. The most suitable reagent for carrying out the transformation given below, is

1. aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$
2. $\mathrm{Hg}(\mathrm{OAc})_{2}$ followed by reaction with $\mathrm{NaBH}_{4} / \mathrm{NaOH}$
3. $\mathrm{B}_{2} \mathrm{H}_{6}$ followed by reaction with $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{NaOH}$
4. m-CPBA followed by reaction with dil $\mathrm{H}_{2} \mathrm{SO}_{4}$
5. Natural product abietic acid, given below, is a
6. monoterpene
7. sesquiterpene
8. diterpene
9. triterpene

10. The reaction of phenylacetylene with one equivalent of methylmagnesium bromide followed by reaction with benzaldehyde provides
11.

2.

3.

4.

140. Sucrose is a disaccharide consisting of

1. glucose and glucose
2. glucose and galactose
3. glucose and fructose
4. glucose and mannose

