
PHYSICAL SCIENCES PAPER I (PART 'B')

- 41. The resolution of a Michelson interferometer operating with a light source of 640 *nm* wavelength is
 - 1. 1280 *nm*.
 - 2. 640 *nm*.
 - 3. 80 *nm*.
 - 4. 1 *nm*.
- 42. When a terminal is at virtual ground, then
 - 1. both current and voltage are zero.
 - 2. only voltage will be zero.
 - 3. only current will be zero.
 - 4. both voltage and current are not zero.
- 43. Platinum resistor (PTR) and a thermistor(THR) are used to measure room temperature. Which of the following is true?
 - 1. PTR offers more accuracy, THR more resolution.
 - 2. PTR offers more resolution, THR more accuracy.
 - 3. Both offer same accuracy, THR offers more resolution.
 - 4. Both offer same resolution, PTR offers more accuracy.
- 44. A four bit A/D converter is used to convert an analog voltage of 8V. The maximum error is
 - 1. 0.5 *V*.
 - 2. 1.0 *V*.
 - 3. 2.0 *V*.
 - 4. 0.25 *V*.
- 45. A voltage of 2300 volts is applied to a cylindrical counter with an anode wire of radius 0.01 *cm* and a cathode inner radius of 1.0 *cm*. The electric field at the anode surface is
 - 1. $5 \times 10^4 \ V/cm$.
 - 2. $5 \times 10^3 \ V/cm$.
 - 3. $5 \times 10^5 \text{ V/cm}$.
 - 4. $5 \times 10^2 V/cm$.
- 46. A γ -ray of energy 1 keV is passed through a solid absorber of thickness 3 cm and mass attenuation coefficient 3 cm^2/g at temperature T_1 . If the same absorber is melted at temperature T_2 , the mass attenuation coefficient will be
 - 1. $3 (T_1/T_2)^2 cm^2/g$.
 - 2. $1/3 \text{ cm}^2/g$.
 - 3. $3 cm^2/g$.
 - 4. $3 (T_2/T_1)^2 cm^2/g$.

- 47. Five panelists are required to elect a sixth member to the panel. If any of the panelists votes against a member, the member is disqualified. What would be the appropriate electronic circuit to be used in the electronic voting machine to implement the above rule?
 - 1. **XOR**
 - 2. **XNOR**
 - 3. OR
 - 4. **AND**
- 48. In an op-amp, when the input signal drives the output at a rate of voltage change greater than the slew rate, then the resulting signal
 - is enhanced. 1.
 - 2. is clipped.
 - 3. is unaffected.
 - remains the same, but with 90° phase difference.
- 49. Sensitive experiments are often performed inside a metal enclosure known as a Faraday cage. Which of the following of Maxwell's equations governs the principle of operation of the cage?
 - $\overset{1}{\nabla}.\overset{1}{E} = \rho / E_0$ 1.

 - 2. $\nabla . \overrightarrow{B} = 0$ $\nabla \times \overrightarrow{E} = -\partial \overrightarrow{B} / \partial t$
- Consider the following operational amplifier circuit with an input signal of frequency 50. 10 *kHz*.

Which of the following represents the output waveform V_0 ?

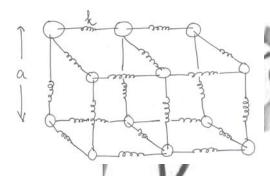
- 51. For the ground state of a particle moving freely in a one-dimentional box $0 \le x \le L$ with rigid reflecting end-points, the uncertainty product (Δx) (Δp) is
 - 1. h/2
 - 2. $\sqrt{2} h$
 - 3. > h/2
 - 4. $h/\sqrt{3}$
- 52. Consider a system of two spin-half particles, in a state with total spin quantum number S = 0. The eigenvalue of the spin Hamiltonian $H = A S_1 S_2$ (A is a positive constant) in this state is
 - 1. $A h^2 / 4$
 - 2. $-Ah^2/4$
 - 3. $3Ah^2/4$
 - 4. $-3Ah^2/4$
- 53. The energy of a 200 nm photon is
 - 1. 0.01 eV
 - 2. 100 eV
 - 3. 10 eV
 - 4. 1 eV
- 54. The wave function $\psi(r)$ of a particle moving in three-dimensional space has the physical dimensions of
 - 1. $(Length)^{-3/2}$
 - $2. \qquad (Length)^{3/2}$
 - 3. $(Length)^{-1}$
 - 4. (Length)
- 55. The eigenvalues of the Pauli spin matrix $\sigma_y = \begin{pmatrix} \theta & -i \\ i & 0 \end{pmatrix}$ are
 - 1. +1,+1
 - 2. +1, -1
 - $3. \qquad -i,+i$
 - 4. +i,+i

- 56. The ground state energy of a particle in an infinite square-well potential of width L is E. If the width of the wall is reduced to L/2, then the ground state energy becomes
 - 1. 2*E*
 - E/2
 - 3. 4*E*
 - 4. E/4
- 57. The classical definition of the orbital angular momentum of a particle is $L = r \times p$. The corresponding quantum mechanical definition for the orbital angular momentum operator (taking into account the fact that r and p do not commute with each other) is
 - 1. $\vec{L} = \vec{r} \times \vec{p}$
 - 2. $\overset{\mathbf{r}}{L} = \frac{1}{2} [(\overset{\mathbf{r}}{r} \times \overset{\mathbf{r}}{p}) + (\overset{\mathbf{r}}{p} \times \overset{\mathbf{r}}{r})]$
 - 3. $\overset{\mathbf{r}}{L} = \frac{1}{2i} [(\overset{\mathbf{r}}{r} \times \overset{\mathbf{r}}{p}) (\overset{\mathbf{r}}{p} \times \overset{\mathbf{r}}{r})]$
- 58. Given the Hamiltonian $\hat{H} = \hat{H}_0 + i\hat{T}$, where \hat{H}_0 and \hat{T} are hermitian operators, which of the following statements are correct?
 - 1. \hat{H} is a hermitian operator and the total probability is conserved
 - 2. \hat{H} is a hermitian operator and the total probability is <u>not</u> conserved
 - 3. \hat{H} is <u>not</u> a hermitian operator and the total probability is conserved
 - 4. \hat{H} is <u>not</u> a hermitian operator and the total probability is <u>not</u> conserved
- 59. The Hamiltonian of a three-level system is

$$H = a \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

The energy eigenvalues are

- 1. 2a, a, -a
- 2. 2*a*, *a*, 0
- $3. \quad 2a, 0, 0$
- 4. 2*a*, *a*, *a*


60. The ground state energy of a particle in the one-dimensional potential

$$V(x) = \begin{cases} \frac{1}{2} mw^2 x^2 & \text{for } x > 0 \\ \infty & \text{for } x < 0 \end{cases}$$

is equal to

- 1. $h\omega$
- 2. $\frac{3}{2}h\omega$
- 3. $2h\omega$
- 4. $\frac{5}{2}$ h ω
- 61. Let k be the wave number of the incident plane wave in a scattering experiment. If the scattering is purely a p-wave with the phase shift $\delta_1 = \pi/4$, then the total scattering cross-section is
 - 1. $\frac{2\pi}{k^2}$
 - 2. $6\pi/k^2$
 - 3. 0
 - 4. k^2
- 62. Plane polarized light will be rotated when it is passed through a solution of
 - 1. Na Cl O₃
 - $2. \hspace{1.5cm} CH \hspace{1.0cm} C1 \hspace{1.0cm} F_2$
 - 3. HC Br Cl F
 - 4. Br CH₃
- 63. The specific heat of silicon monoxide at high temperatures, as compared to silicon dioxide, is
 - 1. larger.
 - 2. smaller.
 - 3. equal.
 - 4. dependent on other parameters not specified here.

- 64. You are shown a spectrum consisting of a series of equally spaced lines. This could be
 - 1. the rotational spectrum of CO.
 - 2. the vibrational spectrum of N_2 .
 - 3. the NMR spectrum of CH₄.
 - 4. the Mossbauer spectrum of Fe $_3$ O $_4$.
- 65. The figure below shows a "bead-spring" model of a simple cubic crystalline lattice. The springs have spring constants *k* and the lattice spacing is *a*. For this model, the shear modulus governing displacements along the *x* direction with a gradient along the *z* direction is:

- 1. 0.
- 2. k/a.
- 3. k / 6a.
- 4. k/a^2 .
- 66. The ratio $\kappa/\sigma T$ (where κ is the thermal conductivity, σ is the electrical conductivity and T is the temperature) for metals
 - 1. is strongly dependent on the number density of the charge carriers.
 - 2. is independent of the temperature T.
 - 3. varies widely from one metal to another.
 - 4. is approximately independent of the particular metal.
- 67. Let $U(x) = \frac{1}{2}ax^2 bx^3 + cx^4$ be the energy cost of stretching the unit cell of a certain crystal

by an amount x, (a, b and c are constants with a and c being positive). Then at temperature T the coefficient of linear thermal expansion (to first order in b and zeroth order in c) is proportional to

- 1. a^2b .
- 2. b/a^2 .
- 3. a^2/b .
- 4. $1/ba^2$.

- 68. The dispersion relation for spinwaves in a three dimensional Heisenberg ferromagnet is $\omega = Ak^2$, where ω is the frequency, k is the wave number, and A is a constant. The contribution of spin waves to the specific heat, at low temperatures T, is proportional to
 - 1.
 - 2.
 - 3.
- 69. For a one-dimensional monatomic lattice with lattice constant a the normal modes satis the relation
 - $\omega(q) = \omega \left(q + \frac{2\pi}{a} \right)$
 - $\omega(q) = \omega \left(q + \frac{\pi}{2a} \right)$
 - 3. $\omega(q) = \omega \left(q + \frac{\pi}{q} \right)$
 - 4. $\omega(q) = \omega(q + 2\pi a)$
- Consider a gas of non-interacting electrons at T=0. If the electrons (of mass m) are replaced 70. by neutrons (of mass M) keeping the density n = N/V the same, the Fermi energy ε_F is changed by a factor
- For a one-dimensional Debye solid, the lattice specific heat at low temperatures T will be proportional to
 - $T^{1/2}$. 1.

 - 2. 3.
 - 4.

- The dispersion relation for a certain type of excitation is given by $\omega = A k^a$, where A and a > 0 are constants. For these excitations, the group velocity is less than the phase velocity 72. when
 - 1. a = 1.
 - $a=\sqrt{2}$.
 - a < 1. 3.
 - 4. $a \ge 2$.
- ¹⁰Be in its first excited state has spin-parity 2⁺. It gets de-excited to the ground state, which 73. has spin parity 0, by γ -emission. The multipoles carried by γ are
 - E2.1.
 - 2. M2.
 - 3. E2, M2.
 - 4. *E*4.
- 74. Two protons are placed at a distance of about 10^{-13} cm from each other. The ratio of the strength of strong and electromagnetic forces between them is roughly
 - 1. 10.
 - 2. 1.
 - 3. 10^3
 - 10^{-5} 4.
- Which of the following is not an acceptable potential for the deuteron $(V_0 > 0; k, \mu > 0)$? 75.

 - $V(r) = -V_0 e^{-\mu r};$ $V(r) = -V_0 \text{ for } r < R_0$ $= 0 \text{ for } r > R_0$ $V(r) = -\frac{1}{2}kr^2$ -V

- The total cross-section for $\mu^+ \mu^- \rightarrow e^+ e^-$ at very high values of the centre of mass energies, 76. $\sqrt{s} >> m_e$, is expected to behave as

 - 3. constant.
- Which of the following is true for β -decay of the neutron? The process 77.
 - violates both parity and charge conjugation symmetry. 1.
 - violates parity but conserves charge conjugation symmetry. 2.
 - 3. conserves parity but violates charge conjugation symmetry.
 - 4. conserves both parity and charge conjugation symmetry.
- The Coulomb repulsion term which contributes to the binding energy of a nucleus ${}^{A}X_{Z}$ is 78. proportional to

 - Z₂. 2.
 - 3. Z(Z-1).
 - It is independent of 2
- In the quark model, the state of π^+ is given by $|u\overline{d}>$. The states for π^- and π^0 are then 79. given by
 - $\left|\overline{u} d\right\rangle; \frac{1}{\sqrt{2}} \left| u\overline{u} + d\overline{d} \right\rangle$.

- 80. The neutral pion π^0 at rest decays into two photons. One of the photons is right circularly polarized. The other photon is
 - 1. also right circularly polarized.
 - 2. left circularly polarized.
 - 3. unpolarized.
 - 4. plane polarized.
- 81. A 100 MeV proton and a 100 MeV alpha particle are detected in the same detector. What is the ratio of energy loss per unit path length i.e. $\left(\frac{dE}{dx}\right)_p : \left(\frac{dE}{dx}\right)_{\alpha}$?
 - 1. 1:1.
 - 2. 1:2.
 - 3. 1:4.
 - 4. 1:16.
- 82. The number of ways in which 5 identical bosons can be distributed in 4 states is
 - 1. $\frac{8!}{5! \, 3!}$
 - 2. $\frac{9!}{5! \, 4!}$
 - 3. $\frac{9!}{4! \, 4!}$
 - 4. $\frac{8!}{4! \ 4!}$
- 83. An adiabat in the *PV*-plane is a curve of
 - 1. constant temperature
 - 2. constant entropy
 - 3. constant pressure
 - 4. constant volume

- 84. The standard deviation of the energy of a system in the canonical ensemble is equal to
 - 1. $\sqrt{C_v}$
 - 2. $k_{\rm B}T^2C_{\nu}$
 - 3. $\sqrt{k_B T^2 C_v}$
 - 4. $\sqrt{k_B T C_v}$
- 85. Blackbody radiation is enclosed inside a spherical cavity of radius r at a temperature T. What would be the temperature of the enclosure if the radius expands to 2r adiabatically?
 - 1. *T*/2
 - 2. *T*
 - 3. $T/\sqrt{2}$
 - 4. 2*T*
- 86. Which of the following is <u>not</u> a periodic function of θ ?
 - 1. $\sin\theta + \pi\cos\theta$
 - 2. $\sin(\pi\theta) + \cos(\pi\theta)$
 - 3. $\sin\theta + \cos(\pi\theta)$
 - 4. $\sin\theta + \cos(\theta + \pi)$
- 87. A given $(n \times n)$ nilpotent matrix A satisfies the equation $A^k = 0$ for 1 < k < n. Therefore,
 - 1. exactly k eigenvalues of A must be zero.
 - 2. exactly (n-k) eigenvalues of A must be zero.
 - 3. every eigenvalue of *A* is zero.
 - 4. A can have (n-1) non-zero eigenvalues.

- 88. The Legendre polynomial $P_n(x)$, where $-1 \le x \le +1$
 - 1. is singular at $x = \pm 1$
 - 2. satisfies $\int_{-1}^{1} dx P_n^2(x) = 1$
 - 3. satisfies $\int_{-1}^{1} dx P_n(x) = 0 \text{ for } n \ge 1$
 - 4. is always an even function of x
- 89. The residue of e^{2/z^2} at z = 0 is
 - 1. 0
 - 2. ∝
 - 3. $2\pi i$
 - 4. 2
- 90. The Newton Raphson iteration formula for the square-root of the real number A-5 is

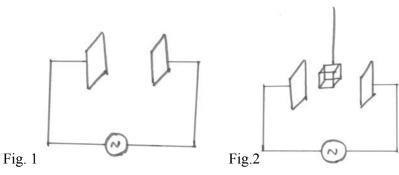
1.
$$x_{n+1} = \frac{x_n^2 - A + 5}{2x_n}$$

2.
$$x_{n+1} = \frac{x_n^2 + A - 5}{2x}$$

3.
$$x_{n+1} = x_n - \frac{x_n}{\sqrt{A-5}}$$

4.
$$x_{n+1} = x_n - \frac{1}{\sqrt{A-5}}$$

- 91. The value of the integral $\int_{0}^{\infty} (4x^2 2)^2 e^{-x^2} dx$ is
 - 1. $4\sqrt{\pi}$
 - 2. $8\sqrt{\pi}$
 - 3. 4 π
 - 4. 8π
- 92. If $\stackrel{1}{A}$ and $\stackrel{1}{B}$ are two unit vectors and $\theta \neq 0$ is the angle between them, then
 - 1. $\sin \theta = \frac{1}{2} \left| \stackrel{\mathbf{r}}{A} + \stackrel{\mathbf{r}}{B} \right|$
 - 2. $\sin \theta = \frac{1}{2} \left| \stackrel{\mathbf{r}}{A} \stackrel{\mathbf{r}}{B} \right|$
 - 3. $\sin \frac{\theta}{2} = \frac{1}{2} \left| \stackrel{\mathbf{r}}{A} \stackrel{\mathbf{r}}{B} \right|$
 - 4. $\sin \frac{\theta}{2} = \frac{1}{2} \left| \stackrel{\mathbf{r}}{A} + \stackrel{\mathbf{r}}{B} \right|$
- 93. The number of independent components of a symmetric and an antisymmetric tensor of rank 2 (in 3-dimensions) are, respectively,
 - 1. 6, 6
 - 2. 9, 3
 - 3. 6, 3
 - 4. 3, 6
- 94. The trapezoidal, Simpson's 1/3 and Simpson's 3/8 rules are exact for polynomials of order
 - 1. 1, 2, 3 respectively
 - 2. 1, 3, 3 respectively
 - 3. 1, 3, 4 respectively
 - 4. 2, 3, 4 respectively


- 95. For the Bessel equation, $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 n^2)y = 0$, where *n* is an integer, the maximum number of linearly independent solutions, well-defined at x = 0 is
 - 1. zero
 - 2. one
 - 3. two
 - 4. three
- 96. Let E_1 , E_2 , E_3 be the first three energy levels of a hydrogen atom. Consider the ratio $(E_3-E_2)/(E_2-E_1)$. Neglecting the fine structure condition this ratio is approximately equal to
 - 1. $\frac{27}{5}$
 - 2. $\frac{1}{27}$
 - 3. $\frac{27}{4}$
 - 4. $\frac{5}{27}$
- 97. The rotational energy levels of a rigid diatomic molecules are given by $E_J = B_e J(J+1)$ where J is the rotational quantum number and B_e is a the constant. The rotational absorption spectrum of the molecules therefore consists of
 - 1. one resonance line
 - 2. lines that are equally spaced
 - 3. lines where the spacing increases with frequency
 - 4. lines where the spacing decreases with frequency
- 98. For an atom with two energy levels placed in a cavity containing blackbody radiation, the ratio of the probabilities for spontaneous emission and stimulated emission is given by

$$\frac{A}{B} = \frac{8\pi h v^3}{c^3}$$
, where A and B are the corresponding Einstein coefficients and v is the

frequency of the photon emitted. The probability of spontaneous emission

- 1. is independent of the energy difference between the two levels.
- 2. increases with the energy difference between the two levels.
- decreases with the energy difference between the two levels.
- 4. is zero.

99. Consider a parallel plate capacitor connected to an AC voltage source (as shown in Fig.1). *A conducting* slab is introduced in the space between the plates from above (as shown in fig.2).

The capacitance of the parallel plate capacitor

- 1. goes to zero.
- 2. increases to a finite value.
- 3. decreases to a non-zero value.
- 4. becomes infinite.
- 100. The volume of a thermodynamic system increases irreversibly by an incremental amount δ V. If P is the pressure, the work done *on* the system is
 - 1. $\delta W = P \delta V$
 - 2. $\delta W = -P \delta V$
 - 3. $\delta W < -P \delta V$
 - 4. $\delta W > -P \delta V$
- 101. Two localized non-interacting spin 1/2 magnetic ions of magnetic moment μ are placed in an external magnetic field H, at temperature T. If $k_{\rm B}T >> \mu H$, then the entropy of the system is, to a good approximation
 - 1. $S = k_{\rm B} \ln 2$
 - 2. $S = 2k_{\rm B} \ln 2$
 - 3. $S = 3k_{\rm B} \ln 2$
 - 4. $S = 4k_{\rm B} \ln 2$
- 102. A thermodynamic system is classified as closed if it can
 - 1. exchange energy with its surroundings, but not matter
 - 2. exchange both energy and matter with its surroundings
 - 3. exchange neither energy nor matter with its surroundings
 - 4. exchange only matter, but not energy, with its surroundings
- 103. Consider an elastic string of length L under tension τ at temperature T. Let U and S be its internal energy and entropy, respectively. Then the conjugate pairs of thermodynamic variables are
 - 1. (τ, T) and (L, S)
 - 2. (L, τ) and (T, S)
 - 3. (T, L) and (τ, U)
 - 4. (L, S) and (T, U)

- 104. At 100°C, water vapour and liquid water coexist in thermodynamic equilibrium in a closed container. If μ and S represent the chemical potential and entropy respectively, then at the interface
 - 1. $\mu_{\text{vapour}} = \mu_{\text{liquid}}$
 - 2. $S_{\text{vapour}} = S_{\text{liquid}}$
 - $S_{\text{vapour}} < S_{\text{liquid}}$
 - 4. $\mu_{\text{vapour}} > \mu_{\text{liquid}}$
- 105. A system in thermal equilibrium consists of subsystems A and B that interact only weakly with each other. If Z_A and Z_B are the canonical partition functions of A and B respectively, the partition function of the total system is given, to a good approximation, by
 - 1. $Z_A + Z_B$
 - 2. Z_A/Z_B
 - 3. $Z_A Z_B$
 - 4. $Z_A Z_B$
- 106. Consider an infinite horizontal surface with fixed surface charge density σ , where \hat{n} is the upward normal to the surface. If an electric field $E_b = E\hat{n}$ is applied from below, the electric field E_a in the region above the surface is
 - 1. $\overset{\mathbf{r}}{E}_{a} = \overset{\mathbf{r}}{E}_{b} \frac{\sigma}{2\varepsilon_{0}} \hat{r}_{a}$
 - 2. $\overset{\mathbf{r}}{E}_{a} = \overset{\mathbf{r}}{E}_{b} + \frac{\sigma}{2\varepsilon_{0}} \hat{n}$
 - 3. $\overset{\mathbf{r}}{E}_{a} = \overset{\mathbf{r}}{E}_{b} \frac{\sigma}{\varepsilon_{0}} \hat{R}_{b}$
 - 4. $\overset{\mathbf{r}}{E}_{a} = \overset{\mathbf{r}}{E}_{b} + \frac{\sigma}{\varepsilon_{0}} \hat{n}$
- 107. A charged particle is travelling in the positive x-direction with a constant velocity. An observer located at a point P on the y-axis observes the electric field due to this charge. Let $\hat{e}(t)$ be the unit vector along the electric field at any time t, and $\hat{n}(t)$ the unit vector in the direction of the position vector of the charge with respect to the observer. Then
 - 1. $\hat{e}(t)$ lags behind $\hat{n}(t)$
 - 2. $\hat{e}(t)$ leads $\hat{n}(t)$
 - 3. $\hat{e}(t)$ is always in the same direction as $\hat{n}(t)$
 - 4. $\hat{e}(t)$ is always perpendicular to $\hat{n}(t)$

108. A current carrying loop lying in the plane of the paper is in the shape of an equilateral triangle of side a. It carries a current I in the clockwise sense. If \hat{k} denotes the outward normal to the plane of the paper, the magnetic moment m due to the current loop is

1.
$$\overset{\mathbf{r}}{m} = a^2 I \hat{k}$$

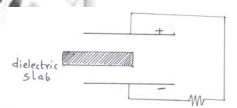
2.
$$\vec{m} = -\frac{1}{2} a^2 I \hat{k}$$

$$3. \qquad \stackrel{\mathbf{r}}{m} = \frac{\sqrt{3}}{2} a^2 I \,\hat{k}$$

4.
$$\vec{m} = -\frac{\sqrt{3}}{4} a^2 I \hat{k}$$

Consider an infinite line charge with linear charge density λ . At a distance r from the line, 109. the electrostatic potential has the form

1.
$$\frac{\lambda a}{4\pi\varepsilon_0 r}.$$


$$2. \qquad \frac{\lambda}{4\pi\varepsilon_0} \exp\left(-r/a\right)$$

3.
$$\frac{\lambda}{4\pi\varepsilon_0} \ln\left(\frac{r}{a}\right)$$

$$4. \qquad \frac{\lambda}{4\pi\varepsilon_0} \frac{r}{a}$$

where a is a constant with dimension of length.

A thin dielectric slab is slowly introduced partially between the plates of a charged parallel 110. plate capacitor, as shown in the figure.

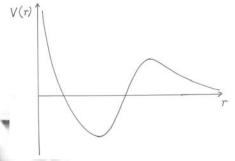
Which of the following is true?

- The slab is pushed out of the region between the capacitor plates.
- 2. 3. The slab is sucked into the region between the capacitor plates.
- The slab moves towards the positively charged plate.
- 4. The slab moves towards the negatively charged plate.

- 111. An electric point charge +q is placed at the point (1, 1) of the xy-plane in which two grounded semi-infinite conducting plates along the positive x and y-axes meet (see figure). The electric potential in the positive quadrant at a large distance r goes as
 - 1. $V(r) \sim r^{-1}$
 - $2. V(r) \sim r^{-2}$
 - $3. V(r) \sim r^{-3}$
 - 4. $V(r) \sim r^{-4}$
- In a given frame of reference, it is found that the electric field $\stackrel{1}{E}(\stackrel{\Gamma}{r},t)$ and the magnetic field $\stackrel{1}{B}(\stackrel{\Gamma}{r},t)$ are perpendicular to each other at all points, *i.e.* $\stackrel{1}{E}(\stackrel{\Gamma}{r},t)\cdot \stackrel{1}{B}(\stackrel{\Gamma}{r},t)=0$. If the fields observed in any other inertial frame are $\stackrel{1}{E}'$ and $\stackrel{1}{B}'$, then
 - 1. E' //B' at all points.
 - 2. $E' \cdot B' < 0$ at all points.
 - 3. $E' \cdot B' > 0$ at all points.
 - 4. $E' \cdot B' = 0$ at all points.
- 113. Consider the $(n \times n)$ matrix A with every element equal to unity. Which of the following statement is correct?
 - 1. The eigenvalues of A are all equal to unity.
 - 2. All the eigenvalues of A are zero.
 - 3. The largest eigenvalue of A is n.
 - 4. *A* cannot be diagonalised by a similarity transformation.
- 114. The total energy E of a particle of mass m executing small oscillations about the origin along on the x-direction is given by

$$E = \frac{1}{2}mv^2 + V_0 \cosh\left(\frac{x}{L}\right),$$

where V_0 and L are positive constants. The time period T of oscillation is


- $1. T = \frac{1}{2\pi} \sqrt{\frac{m}{V_0}}$
- $2. T = 2\pi \sqrt{\frac{L}{m}}.$
- 3. $T = \pi L \sqrt{\frac{m}{E}}.$
- 4. $T = 2\pi \sqrt{\frac{mL^2}{V_0}}$.

- 115. A canonical transformation in classical Hamiltonian dynamics
 - 1. cannot be made if there is more than one degree of freedom.
 - 2. leaves the canonical Poisson bracket relations unchanged.
 - 3. can only be made for the cartesian components of the coordinates and momenta.
 - 4. cannot be time-dependent.
- 116. The motion of a particle of mass m is described in a non-inertial frame of reference that is rotating with a uniform angular velocity $\hat{\omega}$. If \hat{r} denotes the position of the particle in the non-inertial frame
 - 1. the centrifugal force on the particle is $-m\omega^2 r$
 - 2. the centrifugal force on the particle is $-m \stackrel{1}{\omega} \times (\stackrel{1}{\omega} \times \stackrel{1}{r})$.
 - 3. the Coriolis force on the particle is $-m\left(\frac{r}{\omega} \times \frac{dr}{dt}\right)$
 - 4. the Coriolis force on the particle $-2m\omega^2 r$
- 117. The Lagrangian of a particle of mass m moving in a central potential V(r) is

$$L = \frac{1}{2} m \left(\Re + r \operatorname{e}^{\Re} + r^2 \sin^2 \theta \operatorname{e}^{\Re} \right) - V(r)$$

- 1. θ is a cyclic coordinate.
- 2. θ and φ are cyclic coordinates.
- 3. φ is a cyclic coordinate.
- 4. r is a cyclic coordinate
- 118. A relativistic particle of rest mass m_0 is moving with a speed v. The value of v at which its kinetic energy is equal to its rest energy is
 - 1. v = c/2
 - 2. v = c/4
 - 3. $v = c/\sqrt{2}$
 - $4. v = 2\left(\sqrt{2} 1\right)c$
- 119. An asymmetric rigid body has three distinct principal moments of inertia, with $I_x < I_y < I_z$. If we consider rotation with uniform angular velocity about the x, y and z axes, respectively, then the motion is
 - 1. stable about the y-axis, but not about the x and z axes.
 - 2. stable about the x and y axes, but not about the z-axis.
 - 3. stable about the y and z axes, but not about the x axis.
 - 4. stable about the *x* and *z* axes, but not about the *y*-axis.

- 120. The constant acceleration due to gravity on the surface of a planet whose mass is twice the mass of Earth is found to be the same as the constant acceleration due to gravity on the surface of Earth. If R_e is the radius of Earth, then the radius of the planet must be
 - 1. $2R_e$
 - 2. $R_{\rm e}/2$
 - $4R_{\rm e}$
 - 4. $\sqrt{2} R_e$
- 121. A particle of electric charge +q and mass m is fired at a nucleus of charge +Q and mass M in a Rutherford scattering experiment. In the center of mass frame,
 - 1. the total energy, the total angular momentum and the total linear momentum are all conserved.
 - 2. the total energy and the total angular momentum are conserved, but not the total linear momentum
 - 3. the total energy is conserved, but not the total angular momentum and the total linear momentum
 - 4. only the total electric charge is conserved, and no other quantity is conserved
- 122. A particle moves in the central potential V(r) shown in the figure below

Which of the following statements is true?

- 1. Both a stable circular orbit and an unstable circular orbit are possible
- 2. Only a stable circular orbit is possible
- 3. Only an unstable circular orbit is possible
- 4. No circular orbit is possible
- 123. A particle of mass m is thrown upwards from the surface of the Earth with initial velocity components u_x and u_y along the horizontal and vertical directions respectively. The trajectory, therefore is given by $x(t) = u_x t$, $y(t) = u_y t \frac{1}{2}gt^2$. The instant of time at which the acceleration and velocity vectors are perpendicular to each other is given by
 - 1. u_x/g
 - 2. $\left|u_x-u_y\right|/g$
 - $3. \qquad (u_x + u_y)/g$
 - 4. u_y/g

124. The Lagrangian of a particle of mass m moving in two dimension is

$$L = \frac{1}{2} m(x^2 + y^2) - \frac{1}{2} k(x^2 + y^2)$$

If the particle has a finite angular momentum l about the origin, then we may conclude that it executes

- 1. oscillatory motion about the origin r = 0
- periodic motion with a constant value of r2.
- 3. oscillatory motion along the x-axis
- 4. oscillatory motion along the y-axis
- A particle moves in one dimension in a potential $V(x) = x^2/2 + x^3/3$, in suitable units. If E is 125. the total energy of the particle, then the motion is
 - always bounded if $0 \le E \le \frac{1}{6}$ 1.
 - always unbounded if $0 \le E \le \frac{1}{6}$ 2.
 - always bounded if E < 0
 - bounded if $0 \le E \le \frac{1}{6}$ and the initial position satisfies $-1 < x(0) < \frac{1}{2}$ 4.
- 126. Let A and B be the Hermitian operators corresponding to two physical observables of a system, such that $[A, B] \neq 0$. We may conclude in general that
 - the uncertainty product is always $(\Delta A)(\Delta B) > \frac{h}{2}$. 1.
 - the system can never be in a state in which $(\Delta A)(\Delta B) = 0$.
 - neither A nor B can have any eigenstates.
 - A and B may have one or more common eigenstate(s), but not a complete set of these.
- The electronic configuration of the ground state of the Na atom is ${}^2S_{1/2}$. This implies that
 - S=2, L=0, J=2

 - S = 0, L = 1/2, J = 1/2 S = 1/2, L = 0, J = 1/2 S = 0, L = 2, J = 2

- The mirrors of a laser cavity are separated by a distance L. If T is the time taken by the 128. light to travel from one mirror to the other and back, the mode separation is

 - 3.
- A semiconductor diode is employed for rectification of an alternating voltage of 10V and a 129. current of 1A. The forward voltage on the diode, after the system has been in operation for several hours of power dissipation,
 - 1. does not change
 - 2. increases by $\sim 100 \text{ mV}$
 - 3. increases by ~1 mV
 - 4. degreases by ~ 100 mV
- The maximum efficiency of an ideal class B amplifier is 130.
 - 1. 87.5%
 - 2. 50%
 - 3. 68.5%
 - 4. 78.5%
- 131. A free electron gas has DC electrical conductivity $\sigma_0 = \frac{ne^2\tau}{m}$ where *n* is the number density of carriers, e is the charge of the carriers, τ is the relaxation time and m is the effective mass of the carriers. Assuming that there is only one relaxation time, the AC conductivity at frequency ω is modeled by

 - $\frac{\sigma_0}{1+\omega^2\tau^2} \\ (1+i\omega\tau)\sigma_0$

- 132. A proton and a neutron are both subject to a uniform magnetic field. Which of the following is true?
 - 1. Both particles undergo Larmor precession because they have non-zero intrinsic magnetic moments.
 - 2. The neutron does not precess because its intrinsic magnetic moment is zero
 - 3. The proton does not precess because its intrinsic magnetic moment is zero.
 - 4. Both the particles precess and the direction of the precession is the same for the two particles
- 133. The Van der Waals equation of state for 1 mole of a gas is

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

where a and b are constants. If U is the internal energy of n moles of this gas, then $\left(\frac{\partial U}{\partial V}\right)_T$ is

- 1. zero
- $2. \qquad \frac{a}{\left(\frac{V}{n-b}\right)^2}$
- 3. $\left(\frac{a}{nV}\right)^2$
- 4. $\frac{a}{(V/n)^2}$
- 134. If in interior of a unit sphere we have $\overset{1}{\nabla}$. $\overset{1}{J}$ = a positive constant, where $\overset{1}{J}$ is the current density then we may conclude that;
 - 1. according to Gauss' theorem, the charge contained in the unit sphere is constant in time
 - 2. according to Gauss' theorem, charge is flowing into the unit sphere
 - according to the continuity equation, the charge density within the unit sphere must necessarily be uniform
 - 4. according to the continuity equation, the change density inside the unit sphere diminishes with time

- 135. Choose the correct statement from the following:
 - 1. The magnetic field $\stackrel{1}{B}$ is a vector and not a pseudovector.
 - 2. $\vec{E} \cdot \vec{B}$ is a scalar and not a pseudoscalar.
 - 3. $\stackrel{1}{E} \times \stackrel{1}{B}$ is a pseudovector.
 - 4. The magnetic vector potential $\overset{1}{A}$ is a pseudovector.
- 136. Given any arbitrary electric and magnetic fields $\stackrel{1}{E}(\stackrel{r}{r},t)$ and $\stackrel{1}{B}(\stackrel{r}{r},t)$, it is always possible to choose the scalar potential $\phi(\stackrel{1}{r},t)$ and vector potential $\stackrel{1}{A}(\stackrel{r}{r},t)$ such that
 - 1. $\stackrel{1}{A}(\stackrel{r}{r},t)$ is identically zero.
 - 2. $\phi(r,t)$ is identically zero.
 - 3. $\begin{vmatrix} \mathbf{I} & (\mathbf{r},t) \\ A & (\mathbf{r},t) \end{vmatrix}$ is any given non-zero constant.
 - 4. the conditions $\nabla . \overset{1}{A} = 0$ and $\frac{1}{c} \frac{\partial \phi}{\partial t} + \nabla . \overset{1}{A} = 0$ are simultaneously satisfied.
- 137. In a certain region R, Maxwell's equations for the electric and magnetic fields are given by

$$\nabla \cdot \overset{\mathbf{i}}{E} = 0$$
, $\nabla \cdot \overset{\mathbf{i}}{B} = 0$, $\nabla \times \overset{\mathbf{f}}{E} = -\frac{\partial \overset{\mathbf{i}}{B}}{\partial t}$, $\nabla \times \overset{\mathbf{f}}{B} = \mu_0 \varepsilon_0 \frac{\partial \overset{\mathbf{i}}{E}}{\partial t}$.

We may conclude that:

- 1. Both the scalar and the vector potential are necessarily constant in the region R.
- 2. The electric field $\stackrel{1}{E}$ and the magnetic field $\stackrel{1}{B}$ must necessarily be uniform in R.
- 3. There are no sources for electric charges and currents in R.
- 4. The electric field $\stackrel{1}{E}$ is necessarily perpendicular to the magnetic field $\stackrel{1}{B}$ at every point in R.

138. The sum of

$$1 - \frac{\pi^2}{2! \ 4^2} + \frac{\pi^4}{4! \ 4^4} - \frac{\pi^6}{6! \ 4^6} + \cdots$$
 is

- 1. not convergent
- $2. \qquad \frac{\pi}{2}$
- 3. $\frac{\pi}{\sqrt{2}}$
- 4. $\frac{1}{\sqrt{2}}$
- 139. Consider the alpha-decay reaction

$$Po_{84}^{210} \rightarrow Pb_{82}^{206} + He_2^4$$

where atomic masses are

$$m(Po) = 210.0483$$
 amu

$$m(Pb) = 206.0386$$
 amu

$$m(He) = 4.0039$$
 amu

$$1 \text{ amu} = 931.141 \text{ MeV}.$$

The kinetic energy of the alpha particle will be

- 1. 5.4 keV.
- 2. 2.7 keV
- 3. 5.4 MeV
- 4. 10.8 MeV
- 140. Consider the operators a and a^+ , satisfying the commutation relation $[a, a^+] = I$, the unit operator. There are no normalisable eigenstates of the operator
 - 1. a⁺ a
 - 2 a
 - 3 a
 - 4. $(a^{T} a)^{2}$