1.a)Write the frequency values of different polarizations in dielectrics.

b) A problem was given based on the equation $\frac{N\alpha}{3\varepsilon_n} = \varepsilon_r - 1$, $\eta = \sqrt{\varepsilon_r}$ in this problem, refractive index was

given.

- 2. A particle of mass m is in a central force, $r = r_0 e^{-i\theta}$.
 - a. Is the angular momentum is conserved.
 - b. Find the law of force.

c. Find the total energy.

d ?

- 3. O^{15} decays by positive beta decay into N^{15} fine the E_{max} interms of their columbic attractions delta(E_{coul}).
- 4. Rotational partition function problem: Energy is given from that values we have to find the bond lengths. A). j=2. B)j = 4 to j = 2 etc.

5. It is practically proved that the Hydrogen atom contributes to the rotational energies at 100K. Using this data find the

Bond length of Hydrogen.

- 6. $f(z) = \tanh z$; fine the singularities, natures of singularities and residues.
- 7. One problem on quark theory.
- 8. One problem on Fermi gold transitions, where the transitions are valid or not.
- 9. A problem on particle decay combined with quantum mechanics.

10. A particle falling from a height (?) onto to a square plane sheet of charge density(?), find the force on the particle.

11. A wave function is given. From schrodinger equation we have to fine the energy eigen values.

12. 5Kg ice at 273K is connected to a sink which is at 373K

a. Find the change of entropy of ice.

- b. Find the change of entropy of sink
- c. Find the change of entropy of universe.

13. Problem on experimental technique: an experimental technique regarding emission of electrons by heating a coil

With a high potential difference to emit electrons from the target material. Role of different parts & their names.

14. A differential equation $u^2 \frac{d^2 y}{du^2} + u \frac{dy}{du} + y = 0$; assuming $u = \log x$; find the solution of the above differential eqn.

15. A hexagonal & isosceles triangle is given we have to find the magnetic induction.

16. v(x) = x x ≥ 0 ; $\infty x < 0$; $\oint \sqrt{2(E+V)} dx = \left(n + \frac{1}{2}\right)h\pi$; find the energy values using WKB approximation ...

17. Draw the diagrams of $K^+ + P^+ \rightarrow \pi^0 + \Lambda^0 \& \Lambda^{++} \rightarrow P^+ + \pi^-$

18. Probabilities : Two particles of mass m_1 and m_2 having the probabilities $P_1(m_1) = \frac{e^{-\alpha} a^{n_1}}{n_1!}$, $P_2(m_2) = \frac{e^{-\beta} a^{n_2}}{n_2!}$ Find the probabilities of the function $P(n) = \sum_{n=1,n=0}^{\infty} P_1(n_1) + P_1(n_2 - n_1)$

- 19. A problem to reduce a logic circuit to a 3input form.
- 20. Three particles with energies $-\varepsilon$, 0, $+\varepsilon$, find the partition function in MB,BE and FD statisitics.

