1.a)Write the frequency values of different polarizations in dielectrics.
b)A problem was given based on the equation $\frac{N \alpha}{3 \varepsilon_{0}}=\varepsilon_{r}-1, \eta=\sqrt{\varepsilon_{r}}$ in this problem, refractive index was given.
2. A particle of mass m is in a central force, $r=r_{0} e^{-i \theta}$.
a. Is the angular momentum is conserved.
b. Find the law of force.
c. Find the total energy.
d. ?
3. O^{15} decays by positive beta decay into N^{15} fine the $\mathrm{E}_{\text {max }}$ interms of their columbic attractions delta $\left(\mathrm{E}_{\text {coul }}\right)$.
4. Rotational partition function problem: Energy is given from that values we have to find the bond lengths. A). $\mathrm{j}=2$. $B) \mathrm{j}=4$ to $\mathrm{j}=2$ etc.
5. It is practically proved that the Hydrogen atom contributes to the rotational energies at 100K.Using this data find the

Bond length of Hydrogen.
6. $f(z)=\tanh z$; fine the singularities, natures of singularities and residues.
7. One problem on quark theory.
8. One problem on Fermi - gold transitions, where the transitions are valid or not.
9. A problem on particle decay combined with quantum mechanies.
10. A particle falling from a height (?) onto to a square plane sheet of charge density(?), find the force on the particle.
11. A wave function is given. From schrodinger equation we have to fine the energy eigen values.
12.5 Kg ice at 273 K is connected to a sink which is at 373 K
a. Find the change of entropy of ice.
b. Find the change of entropy of sink
c. Find the change of entropy of universe.
13. Problem on experimental technique: an experimental technique regarding emission of electrons by heating a coil

With a high potential difference to emit electrons from the target material. Role of different parts \& their names.
14. A differential equation $u^{2} \frac{d^{2} y}{d u^{2}}+\mathrm{u} \frac{d y}{d u}+\mathrm{y}=0$; assuming $\mathrm{u}=\log \mathrm{x}$; find the solution of the above differential eqn.
15. A hexagonal \& isosceles triangle is given we have to find the magnetic induction.
16. $\mathrm{v}(\mathrm{x})=\mathrm{x} \mathrm{x} \geq 0 ; \infty \mathrm{x} \not 0 ; \oint \sqrt{2(E+V)} d x=\left(n+\frac{1}{2}\right) h \pi$; find the energy values using WKB approximation..
17. Draw the diagrams of $K^{+}+P^{+} \rightarrow \pi^{0}+\Lambda^{0} \& \Lambda^{++} \rightarrow P^{+}+\pi^{-}$
18.Probablities: Two particles of mass m_{1} and m_{2} having the probabilities $\mathrm{P}_{1}\left(\mathrm{~m}_{1}\right)=\frac{\varepsilon^{-\alpha} \alpha^{n 1}}{n_{1}!}, \mathrm{P}_{2}\left(\mathrm{~m}_{2}\right)=\frac{e^{-\beta \alpha^{n 2}}}{n_{2}!}$

Find the probabilities of the function $\mathrm{P}(\mathrm{n})=\sum_{n 1, n 2=0}^{\infty} P_{1}\left(n_{1}\right)+P_{1}\left(n_{2}-n_{1}\right)$
19. A problem to reduce a logic circuit to a 3 input form.
20. Three particles with energies $-\varepsilon, 0,+\varepsilon$, find the partition function in MB, BE and FD statisitics.

