Code : N			
Chemistry			
81.	The equivalent conductances of two strong electrolytes at infinite dilution in H_2O (where ions move freely through a solution) at 25°C are given below		
	$\Lambda^{\circ}_{CH_{3}COONa} = 91.0 \text{S} \text{cm}^2 / \text{equiv}$		
	$\Lambda^{\circ}_{HCl} = 426.2 \mathrm{S}\mathrm{cm}^2 /\mathrm{equiv}$		
	What additional information/quantity one needs to calculate Λ° of an aqueous solution of acetic acid? (1) Λ° of chloroacetic acid (CICH_COOH)		
	(2) Λ° of NaCl (3) Λ° of CH ₃ COOK		
	(4) The limiting equivalent conductance of $H^+\left(\lambda^\circ_{\ H^+} ight)$		
Sol. (2) According to Kohlrausch' law		
	$\Lambda_{\text{m}_{\text{CH}_3\text{COOH}}} = \Lambda_{\text{m}_{\text{CH}_3\text{COO}^-\text{Na}^+}}^{\infty} + \Lambda_{\text{m}_{\text{HCI}}}^{\infty} - \Lambda_{\text{m}_{\text{NaCI}}}^{\infty}$		
	$\therefore \Lambda_m^{\infty}$ of NaCl is required.		
82.	Which one of the following is the strongest base in aqueous solution?(1) Methylamine(2) Trimethylamine(3) Aniline(4) Diemethylamine		
Sol. (3)		
	Dimethylamine is the strongest base in aqueous solution Order of basic character in aqueous solution is 2° amine > 1° amine > 3° amine		
83.	The compound formed as a result of oxidation of ethyl benzene by KMnO4 is(1) benzyl alcohol(2) benzophenone(3) acetophenone(4) benzoic acid		
Sol. (4)		
	$(\bigcirc^{C_2H_5} \xrightarrow{KMnO_4} (\bigcirc^{COOH})$		
	On oxidation with $KMnO_4$ the side chain attached to ring gets oxidised to —COOH group.		

Species	Molecular orbital configuration.
NO	$\sigma^{1}s^{2}, \sigma^{*}1s^{2}, \sigma^{2}s^{2}, \sigma^{*}2s^{2}, \pi^{2}p^{2}x = \pi^{2}p^{2}y, \sigma^{2}p^{2}z, \pi^{*}2px = \pi^{*}2py$
0 ₂ ²⁻	$\sigma 1s^{2}, \ \sigma^{*}1s^{2}, \ \sigma 2s^{2}, \ \sigma^{*}2s^{2}, \ \sigma 2p_{z}^{2}\pi 2p^{2}x = \pi 2p^{2}y, \ \pi^{*}2p^{2}x = \pi^{*}2p^{2}y, \ \sigma^{*}2p_{z}^{2}$
0 ₂ +	$\sigma^{1}s^{2}, \sigma^{*}1s^{2}, \sigma^{2}s^{2}, \sigma^{*}2s^{2}, \sigma^{2}p^{2}_{z}, \pi^{2}p^{2}x = \pi^{2}p^{2}y, \pi^{*}2p^{1}x = \pi^{*}2py$
O ₂	$\sigma^{1}s^{2}, \sigma^{*}1s^{2}, \sigma^{2}s^{2}, \sigma^{*}2s^{2}, \sigma^{2}p^{2}_{z}, \pi^{2}p^{2}x = \pi^{2}p^{2}y, \pi^{*}2p^{1}x = \pi^{*}2p^{1}x$

. Only O_2^{2-} does not contain any unpaired electron and is diamagnetic.

86.The stability of dihalides of Si, Ge, Sn and Pb increases steadily in the sequence
(1) $PbX_2 \ll SnX_2 \ll GeX_2 \ll SiX_2$ (2) $GeX_2 \ll SiX_2 \ll SnX_2 \ll PbX_2$ (3) $SiX_2 \ll GeX_2 \ll PbX_2 \ll SnX_2$ (4) $SiX_2 \ll GeX_2 \ll SnX_2 \ll PbX_2$

Sol. (4)

Stability of +2 oxidation state in group 14 increases down the group

: correct order is $SiX_2 \ll GeX_2 \ll Sn X_2 \ll PbX_2$

Code : N			
87.	Identify the incorrect statement among the following: (1) Br_2 reacts with hot and strong NaOH solution to give NaBr, NaBrO ₄ and H ₂ O (2) Ozone reacts with SO ₂ to give SO ₃ (3) Silicon reacts with NaOH _(aq) in the presence of air to give Na ₂ SiO ₃ and H ₂ O (4) Cl_2 reacts with excess of NH ₃ to give N ₂ and HCI		
Sol ((3)		
301. (Si dissolves in hot aqueous alkali to liberate b	vdrogen	
	Si dissolves in not aqueous aixaii to liberate ng	yulogen	
	$\text{Si} + 4\text{OH}^- \rightarrow \text{SiO}_4^{4-} + 2\text{H}_2$		
88.	The charge/size ratio of a cation determines sequences represents the <u>increasing order</u> K ⁺ , Ca ²⁺ , Mg ²⁺ , Be ²⁺ ?	its polarizing power. of the polarizing pow	Which <u>one</u> of the following ver of the cationic species,
	(1) Ca ²⁺ < Mg ²⁺ < Be ²⁺ < K ⁺	(2) Mg ²⁺ < Be ²⁺ < K ⁺	⁺ < Ca ²⁺
	(3) $Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$	(4) K ⁺ < Ca ²⁺ < Mg ²⁻	+ < Be ²⁺
Sol. ((4)		
	Polarising power of cation $\alpha \frac{\text{charge}}{\text{size}}$, for Be ²	$^{2+}, Mg^{2+}, Ca^{2+}$ since c	harge is same and size is in
	the order $Ca^{2+} > Mg^{2+} > Be^{2+}$, the order of p	olarising power is Be ²	$^{2+} > Mg^{2+} > Ca^{2+}$ charge of
	K⁺ is lowest and size is larger than Ca²+ ∴ its polarising power is lowest.		
	Hence the correct order is $K^+ < Ca^{2+} < Mg^{2+}$	< Be ²⁺	
89.	The density (in g mL ^{-1}) of a 3.60 M sulphur = 98 g mol ^{-1}) by mass will be	ic acid solution that i	s 29% H_2SO_4 (Molar mass
	(1) 1.45 (2) 1.64	(3) 1.88	(4) 1.22
Sol. (4) Let the mass of solution be 100 g then mass of $H_2SO_4 = 29$ g			
	moles of $H_2SO_4 = \frac{29}{98} = 29 \cdot 59 \times 10^{-2}$		
	Molarity = $\frac{\text{no of moles}}{\text{Volume of solution (L)}}$		
	$V(L) = \frac{\text{no of moles}}{\text{molarity}}$		
	$=\frac{29.59\times10^{-2}}{3.6}$		

Сс	ode : N			CAREER LAUNCHER
	= 8.22×10 ⁻² L = 82.2 mL			
	\therefore density of solution =	$= \frac{\text{mass of solution}}{\text{volume of solution}}$		
	$=\frac{100}{82.2}=1.22 \text{ g/ml}$			
90.	The first and second dis The overall dissociation (1) 0.2×10^5	sociation constants of an n constant of the acid wil (2) 5.0×10^{-5}	acid H₂A are 1.0 × 10⁻⁵ a II be (3) 5.0 × 10¹⁵	and 5.0 × 10 ⁻¹⁰ respectively. (4) 5.0 × 10 ⁻¹⁵
Sol (4)			
301. (*	$K_1 = 1.0 \times 10^{-5}$			
	$K_2 = 5.0 \times 10^{-10}$			
	$K_{Total} = K_1 \times K_2 = 5 \times$	10 ⁻¹⁵		
91.	A mixture of ethyl ald The vapour pressure of vapour pressure (in mr	cohol and propyl alcoho of propyl alcohol is 200 n n) at the same temperati	bl has a vapour press nm. If the mole fraction ure will be	ure of 290 mm at 300 K. of ethyl alcohol is 0.6, its
	(1) 360	(2) 350	(3) 300	(4)700
Sol. (2) Let ethanol be compon	nent A and propanol be c	omponent B.	
	$P_{T} = P_{A}^{\circ} x_{A} + P_{B}^{\circ} x_{B}$			
	$290 = P_A^{\circ} \times 0.6 + 200 >$	× 0.4		
	$290 = 0.6 + P_A^{\circ} + 80$			
	$0.6 \times P_A^{\circ} = 210$			
	$P_A^{\circ} = \frac{210}{0.6} = 350 \text{ mm c}$	of Hg		
92.	In conversion of lime-s	tone to lime, $CaCO_3(s)$	\rightarrow CaO(s) + CO ₂ (g)	
	the values of ΔH° and	I ΔS° are +179.1 kJ mol	and 160.2 J/K respe	ctively at 298 K and 1 bar.
	Assuming that ΔH° and ΔS° do not change with temperature, temperature above which conversion			
	of limestone to lime wil (1) 1118 K	ll be spontaneous is (2) 1008 K	(3) 1200 K	(4) 845 K

Sol. (1)

 $\Delta H^{\circ} = + 179.1 \, kJ/mol$

$$\Delta S^\circ$$
 = + 160.2 J/K

 $T=298\,K,\ P=1\,bar$

$$\Delta \mathsf{G}^\circ = \Delta \mathsf{H}^\circ - \mathsf{T} \Delta \mathsf{S}^\circ$$

at equilibrium $\Delta G^\circ = 0 \ \Delta H^\circ = T \Delta S^\circ$

$$T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{179.1 \times 10^3}{160.2} = 1117.98 \text{ K}$$

Therefore conversion of limestone to line will be spontaneous above 1118 K

93. The energies of activation for forward and reverse reactions for $A_2 + B_2 \rightleftharpoons 2AB$ are 180 kJ mol⁻¹ and 200 kJ mol⁻¹ respectively. The presence of a catalyst lowers the activation energy of both (forward and reverse) reactions by 100 kJ mol⁻¹. The enthalpy change of the reaction

 $(A_2 + B_2 \rightarrow 2AB)$ in the presence of catalyst will be (in kJ mol⁻¹)

(1) 20	(2) 300
(3) 120	(4) 280

Sol. (1)

In the presence of catalyst E_a (forward) = 80 kJ/mol E_a (backward) = 100 kJ/mol $\Delta H = E_a$ (forward) – E_a (backward) = 80 – 100 = - 20 kJ/mol. (Considering options (1) is correct.)

94. The cell, $Zn \mid Zn^{2+}$ (1M) $\mid\mid Cu^{2+}$ (1M) $\mid Cu(E_{cell}^0 = 1.10 \text{ V})$, was allowed to be completely

discharged at 298 K. The relative concentration of Zn²⁺ to Cu²⁺, $\left(\frac{[Zn^{2+}]}{[Cu^{2+}]}\right)$ is

(1) 9.65×10^4 (2) antilog (24.08)(3) 37.3(4) $10^{37.3}$

Sol. (4)

$$\begin{split} &Zn \left| Zn^{2+}(IM) \right| \left| Cu^{2+} \left(IM \right) \right| Cu \\ &E^{\circ} \text{ cell} = 1.10 \text{ V} \\ &\Delta G^{\circ} = - nFE_{cell}^{\circ} \end{split}$$

$$= -2 \times 96500 \times 1.1 \text{ J}$$

$$\Delta G^{\circ} = -2.12 \times 10^{5}$$
$$\Delta G^{\circ} = - RT \ln K$$

$$= -2.303 \text{ RT} \log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]}$$

∴ $\log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]} = \frac{2.12 \times 10^5}{-2.303 \times 8.314 \times 298}$
 $\log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]} = 37.15$
or $\frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]} = 10^{37.15}$

95. The pK_a of a weak acid (HA) is 4.5. The pOH of an aqueous buffered solution of HA in which 50% of the acid is ionized is (1) 7.0 (2) 4.5 (3) 2.5 (4) 9.5

Sol. (4)

$$pH = pK_a + log \frac{[Salt]}{Acid}$$
$$pH = 4.5 + log \frac{1}{1}$$
$$pH = 4.5$$
$$pOH = 14 - 4.5 = 9.5$$

96. Consider the reaction,

 $2A + B \rightarrow Pr$ oducts When concentration of B alone was doubled, the half-life did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is (1) s⁻¹ (2) L mol⁻¹ s⁻¹ (3) no unit (4) mol L⁻¹ s⁻¹

Sol. (1)

- (1) It is example of first order reaction.
- (2) The unit of rate constant for this reaction is sec^{-1} .
- 97. Identify the incorrect statement among the following
 - (1) 4f and 5f orbitals are equally shielded
 - (2) d-block elements show irregular and erratic chemical properties among themselves
 - (3) La and Lu have partially filled d orbitals and no other partially filled orbitals
 - (4) The chemistry of various lanthanoids is very similar.

Sol. (1)

4f and 5f orbitals are equally shielded is incorrect statement.

98. Which one of the following has a square planar geometry?

(1) $[PtCl_4]^{2-}$ (2) $[CoCl_4]^{2-}$ (3) $[FeCl_4]^{2-}$ (4) $[NiCl_4]^{2-}$ (At. nos. Co = 27, Ni = 28, Fe = 26, Pt = 78)

Sol. (1)

 $[PtCl_4]^{2-}$ has a square planar geometry.

99. Which of the following molecules is expected to rotate the plane of plane-polarised light ?

Sol. (4)

Let masses of methane and oxygen be m and total pressure be P.

Partial pressure of $O_2 = \frac{\frac{m}{32}}{\frac{m}{32} + \frac{m}{16}} \times P = \frac{1}{3} \times P$

108. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass = 60 g mol^{-1}) in the same solvent. If the densities of both the solution are assumed to be equal to 1.0 gm⁻³, molar mass of the substance will be

(1) 210.0 g mol⁻¹ (1) 115.0 g mol⁻¹ (1) 105.0 g mol⁻¹

Sol. (1)

 $\pi_1 = \pi_2$

$$\frac{W_1}{M_1V_1}R = T = \frac{W_2}{M_2V_2}RT$$

$$V_1 = V_2$$
 because densities are same

$$\frac{0.20}{M_1} = \frac{1.0}{60}$$

or
$$M_1 = \frac{5.25 \times 60}{1.5} = 210 \text{ gmol}^{-1}$$

109. Assuming that water vapour is an ideal gas, the internal energy change (ΔU) when 1 mol of water is vapourised at 1 bar pressure and 100 °C, Given Molar enthalpy of vapourisation of water at 1 bar and 373 K = 41 kJ mol⁻¹ and R = 8.3 J mol⁻¹ K⁻¹) will be: (1) 41.00 kj mol⁻¹ (2) 4.100 kj mol⁻¹

(3) 3.7904 kj mol⁻¹ (4) 37.904 kj mol⁻¹

Sol. (4)

 $\Delta H - \Delta U = P \Delta V = nRT$ $\Delta U = \Delta H - nRT$ $= 41000 - 1 \times 8.3 \times 373$ $= 37904.1 \text{ J mol}^{-1}$ $= 37.904 \text{ kJ mol}^{-1}$

110. In a saturated solution of the sparingly soluble strong electrolyte $AgIO_3$ (Molecular mass = 283) the equilibrium which sets in is

 $\operatorname{AglO}_{3(s)} \rightleftharpoons \operatorname{Ag}^{+}_{(aq)} + \operatorname{IO}^{-}_{3(aq)}$

If the solubility product constant K_{sp} of AgIO₃ at a given temperature is 1.0×10^{-8} , what is the mass of AgIO₃ contained in 100 ml of its saturated solution ?

🕖 CAREER LAUNCHER 👸 🗕

(1) 1.0×10^{-4} g (2) 28.3×10^{-2} g (3) 2.83×10^{-3} g (4) 1.0×10^{-7} g

Sol. (3)

Concentration $AglO_3 = 10^{-4}$

Moles of $AgIO_3 = \frac{100}{1000} \times 10^{-4} = 10^{-5}$

Mass of $AgIO_3 = 10^{-5} \times 283 = 2.83 \times 10^{-3} g$

A radioactive element gets spilled over the floor of a room. Its half-life period is 30 days. If the initial activity is ten times the permissible value, after how many days will it be safe to enter the room ?
(1) 100 days
(2) 1000 days
(3) 300 days
(4) 10 days

Sol. (1)

$$t = 30 \times \frac{2.303}{0.693} \log \frac{10}{1}$$

t = 100 days.

112. Which one of the following conformations of cyclohexane is chiral?

(1) Boat	(2) Twist boat
(3) Rigid	(4) Chair

Sol. (2)

, Twist boat form

- **113.** Which of the following is the correct order of decreasing SN^2 reactivity? (1) $R_2CHX > R_3CX > RCH_2X$ (2) $RCH_2X > R_3CX > R_2CHX$ (3) $RCH_2X > R_2CHX > R_3CX$ (4) $R_3CX > R_3CHX > RCH_2X$ (X = a halogen)
- Sol. (3)

 $RCH_2X > R_2CHX > R_3CX$

Sol. (1)

6 mol of HCl (aq) produced 3 mol of H₂

$$\therefore$$
 1 mol of HCl(aq) = $\frac{3}{6}$ = .5 mol

Volume of H_2 gas = $.5 \times 22.7 = 11.35$ L

118. Regular use of which of the following fertilizers increases the acidity of soil ?(1) Ammonium sulphate(2) Potassium nitrate(3) Urea(4) Superphosphate of lime

Sol. (1)

Ammonium sulphate increases acidity of soil.

- **119.** Identify the correct statement regarding a spontaneous process:
 - (1) Lowering of energy in the reaction process is the only criterion for spontaneity
 - (2) For a spontaneous process in an isolated system, the change in entropy is positive
 - (3) Endothermic processes are never spontaneous
 - (4) Exothermic processes are always spontaneous

Sol. (2)

For spontaneous reaction free energy change must be negative, for isolated system it happens when entropy changes is positive. (At constant pressure)

- 120. Which of the following nuclear reactions will generate an isotope ?
 - (1) β -particle emission
 - (3) positron emission

- (2) neutron particle emission
- (4) α -particle emission

Sol. (2)

Neutron particle emission.