MATHEMATICS

- If I, N, R, Q denotes respectively the sets of integers natural numbers, real numbers and rational numbers, then consider the following statements
 - I. ICNCQCR
 - 2 I ⊂ Q and N ⊂ R
 - 3. I = R, N = O

Of these statements

- a. 1, 2, 3 are correct
- b. I alone is correct
- c. 2 alone is correct
- d. 2 and 3 are correct
- If p is real number such that 0< p<1 and x and y are real numbers with x< y, then
 - $a p^x < p^y$
 - b. $p^x > p^y$
 - $c p^y > p^x > 1$
 - d. $p^y > 1 > p^x$
- 3. The real part of $(\sin x + i \cos x)^5$ is equate
 - a. -cos 5x
 - b. sin 5x
 - c. sin 5x
 - d cos 5x
- 4. The modulus of $\frac{1+\sqrt{1-(1-t)}}{\sqrt{1-(1-t)}}$ reequal to
 - a
 - b. √5
 - # 65
 - 0 5
- 5. It a, b are any two integers and b\neq 0, then the exist a unique pair of integers q, r such that a = bq + r, where
 - a. 0≤r≤|b|
 - b. 0≤|r|<|b|
 - c. 0≤r<|b|
 - $|\mathbf{d}| |\mathbf{b}| \le r \le |\mathbf{b}|$
- For any positive integers n and m, the least positive number in the set

- (xn + ym x and y are integers) is
- a. L. c. m(n, m)
- b. h. c. f. (n. m)
- c. n+m
- d nm
- 7 If the gcd of a and b is denoted by (a, b then consider the following state pens)
 - 1. if (a, b) = d, $a = a_1 d$, $a = b_1 d$ then $(a_1, b_1)=1$
 - 2. if (a, c)= d> 1, a |c| olb men ac |b.
 - 3. if (a, b) c and b | c then ab | c.

Of these s will ner s

- a. I and 2 are correct
- h 2 and 3 are correct
- c and 3 are correct
- .2 and 3 are correct
- If $f(x) = 2x + 4x^2$, $g(x) = 2+6x + 4x^2$ are polynomials in K[X], where K is the ring of integers modulo 8 then the degree of f(x) g(x) is
 - a. 1
 - b. 2
 - c. 3
 - a v
- 9. If $x^3+5x^2-3x + 2$ is divided by x + 1, then the remainder will be
 - a. 5
 - b 9
 - c. 10
 - d. 11
- 10. If α , β , γ are the roots of $2x^3 3x^2 + 6x + 1 = 0$, then $\alpha^2 + \beta^2 + \gamma^2$ is
 - a. 15
 - b. -3
 - c. -15
 - d. $\frac{33}{4}$

- 11. If the roots of the equation $x^n-1=0$ are 1, $\alpha_1,\alpha_2,...,\alpha_{n-1}$ then $(1-\alpha_1)(1-\alpha_2).....(1-\alpha_{n-1})$ is equal to
 - a. 0
 - b. 1
 - e. n
 - d. n+1
- If for the equation x³-3x²+kx + 3=0, one root is the negative of another, then the value of k is
 - a. 3
 - b. -3
 - c. 1
 - d. -1
- If A={a, b,c}, then the number of proper subsets of A is
 - a. 5
 - b. 6
 - c. 7
 - d. 8
- 14. Consider the following statements with regard to a relation R în real numbers defined by xRy ↔ 3x = 4y = 5
 - 1. 0R1
 - 2. $1R\frac{1}{2}$
 - 3. $\frac{2}{3}R\frac{3}{4}$
 - 4. $\frac{3}{2}R\frac{1}{4}$

Of these statemen

- a. 2 and 3 al conset
- b. 1 and 2 are precet
- e. . h. 4. are correct
- 1. 'a d 4 are correct
- 15. It α is a mapping of S into T and β is a mapping of T into S such that $\alpha\beta=1$ and $\beta\alpha=1$, where 1 denotes the identity mapping then α and β are
 - 1. 1-1 mappings
 - 2. Not onto
 - 3. B-a1

Select the correct answer the below:

Codes:

- a. 1 and 2
- b. I and 3
- c. 2 and 3
- d. 1, 2 and 3
- Consider the following function, of which one of the more functions may be injectious from Z into Z.
 - I. $x \rightarrow x^2$
 - $2. x \rightarrow 2x$
 - 3. $x \rightarrow 2+x$

Select the functions which are -1 using the codes given below.

Codes:

- a. 1, 2 and 3
- b. 1 and
- e. 1 and
- d. and 3
- 17. R= (y,)|x, y are integers such that xy s (visible by 5), then R is
 - ot a relation
 - b. an anti-symmetric relation
 - c. an equivalence relation
 - d. a relation which is not reflexive
- Let <Z, + . > be the ring of integers.
 Define a R b iff a-b is even, then the relation R is
 - a. reflexive only
 - b. reflexive and symmetric only
 - c. symmetric and transitive only
 - d. an equivalence relation
- 19. Which one of the following is an example of non commutative ring?
 - a. Residue class ring mod 6
 - b. 2 * 2 matrices over a field
 - c. the ring of polynomials over Z6
 - d. the ring of Gaussian integers
- Consider the following statements (
 - 1. every cyclic group is abelian
 - 2. every abelian group is cyclic
 - there is atleast one abelian group of every finite order n>0
 - 4. every group of order 4 is cyclic

Of these statements

a. 2 alone is correct

- b. 1,3 and 4 are correct
- c. 1 and 4 are correct
- d. 1 and 3 are correct
- 21. In the group S₃ of all permutations of 1, 2, 3 the inverse of $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ is
 - a. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$
 - b. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
 - e. $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$
 - d. 1 2 3 3 3 2 1
- 22. F is a field containing n elements .If n∈{122, 123, 124, 125} ,then
 - a. n = 122
 - b. n = 123
 - e. n=124
 - d. n = 125
- 23. Let I be the set of all integers and let * be binary operation in I defined by a*b = a b + 10 ∀a, b∈ I, then (1,*) is an abelian group. The identity element of this you is
 - a. 0
 - b. 10
 - c. -10
 - d. 1
- 24. Consider the gain (Z₇, ⊗) of non-zero residue classic, under multiplication modulo (If |X| ∈ Z₇ is such that [2] ⊗[X = C₁, then which one of the to low up is correct?
 - |X|-[3]
 - b. [X]=[4]
 - c. [X]=[5]
 - d. [X] = [6]
- 25. Consider the following statements relating to matrix operations :
 - if A is a m *n matrix, then B has to be n *m matrix for AB and BA to be defined

- If (A+ B) and AB are defined , then A and B must be square matrices of the same order
- If AB and BA are both defined, then AB= Q implies BA= Q where Q is the null matrix

Of these statements

- a. 1 and 2 are correct
- b. 1 and 3 are correct
- c. 2 and 3 are correct
- d. 1, 2 and 3 are correct
- 26. If $2\begin{bmatrix} x & y \\ z & p \end{bmatrix} + 9\begin{bmatrix} -2 & 2 \\ 1 & 0 \end{bmatrix} = 8$, where I is the identity matrix, then the values of x and y
 - a, x = 0, =-
 - b. x=0) (
 - c. 1 = 18. = 2
 - w & 10, y=.9
- x+b = 0 , then one of the a = b + c

values of x is

- a. (a+b+c)
- b. -(a+b+c)
- $c = (a^2 + b^2 + c^2)$
- d. $(a^3+b^3+c^3)$
- Consider the following statements relating to any two matrices A and B such that AB is defined:
 - I. (AB) = BIAI
 - 2. $(AB)^T = B^T A^T$
 - 3. Rank (AB)smin (Rank A, Rank B)

Here A^T is the transpose and A⁴ denotes the inverse of A

Of these statements

- a. 1, 2 and 3 are correct
- b. 1 and 2 are correct
- c. 1 and 3 are correct
- d. 2 and 3 are correct
- 29. If $A = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$, then its inverse is
 - a. $\begin{pmatrix} -5 & -2 \\ -3 & -1 \end{pmatrix}$

- b. (5 2)
- e. [-5 2]
- d. (4 4)
- 30. The system of equations

$$x - y + 3z = 0$$

$$x + z = 0$$

$$x + y - z = 0$$
 has

- a. a unique solution
- b. finitely many solutions
- e. infinitely many solutions
- d. no solution
- 31. The set Q of not rational numbers is
 - a. Ordered and complete
 - b. Neither ordered nor complete
 - e. Ordered but not complete
 - d. Complete but not ordered
- 32. Which one of the following statements is not correct
 - every bounded and infinite sequence of real numbers has at least one line point
 - b. every convergent real nur be sequence is bounded
 - c. every monotonic real nume. opence is convergent
 - d. every increasing storence of positive numbers diverges of the a single limit point
- 33. f is a function, on R to R and 'a' is a real number (1) Gis river to be continuous at x =a, then (iii)
 - ne er clists
 - may or may not exist
 - always exists and is equal to f(a)
 - d. always exists but may or may not be equal to f(a)
- A continuous function f from a bounded closed interval [a, b] to R
 - a. is always unbounded
 - b. may be bounded or unbounded
 - is always bounded and attains its bounds

- d. is always bounded but may or may not attain its bounds
- 35. $\frac{d}{dx} \left(\arcsin \sqrt{\frac{x-\beta}{\alpha-\beta}} \right), \alpha \ge x \ge \beta$ is equal to
 - a $\frac{1}{\sqrt{(\alpha-x)(x-\beta)}}$
 - b. $\frac{1}{2(\alpha-\kappa)(\kappa-\beta)}$
 - $C_{*} = \frac{1}{(\alpha r)(x \beta)}$
 - d. $\frac{1}{2\sqrt{(\alpha-\kappa)(\kappa-\beta)}}$
- 36. The function f defined on $f = (0, 1) \cup (2, 3)$ by f(x) = 1 f = 1
 - a. not dif ere able at some points of A
 - b, different able on A but f " does not cist at ome points of A
 - decreases of all orders exist and are equal to zero though f is not a constant function
 - d. not a function that has the properties
 (a), (b) or (c)
- 37. A cube is expanding in such a way that its edge is changing at a rate of 5cm/sec. If its edge is 4 cm long, then the rate of change of its volume is
 - a. 100 cm³/sec
 - b. 120 cm³/sec
 - c. 180 cm³/sec
 - d. 240 cm³/sec
- 38. The derivative of the function $f(x) = \log^{1} x^{2}$ w.r.t. x is
 - $a, \frac{(\ln 3)}{2x(\ln x)^2}$
 - b. $\frac{2(\ln 3)}{x(\ln x)^2}$
 - c. $\frac{(\ln 3)}{2\pi(\ln x)^2}$
 - $d_1 = \frac{(\ln 3)}{2s(\ln x)^2}$
- 39. If $f(x) = e^x$ and $g(x) = \ln x$, then (gof)'(x) is equal to
 - a. ()
 - b. 1
 - c. E

- d. 1+e
- 40. If $\frac{x}{y} + \frac{y}{x} = 2$, then $\frac{dy}{dx}$ is
 - a. 1
 - b. 2
 - e. -1
 - d. -2
- 41. If f(x) = ax + b, $x \in [-1,1]$, then the point $c \in (-1,1)$ where $f'(c) = \frac{f(1) f(-1)}{2}$
 - a. does not exist
 - b. can be any c∈(-1,1)
 - c. can be only $\frac{1}{2}$
 - d. can be only $-\frac{1}{2}$
- 42. If $f(x) = (1-x)^{5/2}$ and $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}$ $f''(\theta x)$, then the value of θ as $x \to 1$ is
 - a. 1
 - b. 4/5
 - e. 9/25
 - d. 16
- 43. The maximum and minim values of $\left(x^{3} \frac{2}{3}x^{3} 2x^{2} + 2x\right)$ in the array $\left[0, 3\right]$ are
 - a. 51 and 0
 - b. $\frac{23}{48}$ and 0
 - e. $\frac{1}{2}$ an 10
 - a. a vnd
- 44. It e equation of the asymptote to the curve
 - x y3-3axy is
 - a. x+y=3a
 - b. x + y=-a
 - c. x+y= -2a
 - d. x +y = 3a
- The length of the subtangent of the rectangular hyperbola x²-y²=a² at the point (a, √2 a) is

- a. √2 a
- b. $\frac{a^{3/3}}{\sqrt{2}}$
- e. 2a
- d. $\frac{1}{2a}$
- 46. The normal to the parabola x² = 4ay at the point (2a, a) on it cuts the parabola again at the point whose coording as
 - a. (-2a, a)
 - b. (-4a, 4a)
 - c. (-6a, 9a)
 - d. (-8a, 16a)
- 47. If z be a function of x 201, then consider the following statements:
 - A. $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$ at the point x = a, y = b.
 - P. The problem derivatives $\frac{\partial^2 z}{\partial x \partial y}$ and $\frac{\partial^2 z}{\partial y \partial x}$
 - both continuous in x and y at the joint x =a,y=b,

Of the above

- a. statements A implies and is implied by statement B
- b. it is possible that A is true but B is false, but if B is true then A is necessarily true
- it is possible that A is false but B is true, but if A is true then B is necessarily true
- d. it is possible that A is true that B is false and it is also possible that B is true but A is false
- 48. If $u = \sin^{-1} \left(\frac{x^{3/3} + y^{3/3}}{x^{3/3} + y^{3/2}} \right)^{1/2}$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is
 - a. $\frac{1}{12} \tan u$
 - b. $-\frac{1}{12} \tan u$
 - c. 12
 - d. $\frac{-12}{\tan u}$
- 49. The point of inflection on the curve $a^2y^2=x^2(a^2-x^2)$ is
 - a. (0,0)

b:
$$\left(\sqrt{\frac{3}{2}}, a, 0\right)$$

c.
$$\left[-\sqrt{\frac{3}{2}}, a, 3\right]$$

50. If y = x⁴+2x³-4x + 4, then which one of the following statements is correct?

b. y is decreasing for
$$-2 \le x \le -\frac{1}{2}$$

e. y is decreasing for
$$-\frac{1}{2} < x < 1$$

51. If f is a continuous function, then $\lim_{n\to\infty} \sum_{r=0}^{n-1} \left\{ r \left(\frac{r}{n} \right) \right\} \frac{1}{n} \text{ can be expressed as}$

a.
$$\int_{0}^{1} f\left(\frac{1}{x}\right) dx$$

b.
$$\int_{0}^{1} f(x)dx$$

$$c. \int_{0}^{1} x f(x) dx$$

d.
$$\int_{0}^{\frac{1}{x}} \int \left(\frac{1}{x}\right) dx$$

52. If f(x) is continuous in [a, b] and f(x) is any function such that F'(x) = f(x), then

$$\mathbf{a.} \quad \int_{a}^{b} F(x) dx - f(b) - f(a)$$

b.
$$\int_a^b F(x)dx = f(a) - f(b)$$

$$C. \quad \int f(v)dv = F(b) \cdot F(a)$$

53. f(x) = (x - x), then $\int_{0}^{x} f(x)dx$ is

$$2\int_{0}^{x}f(x)dx$$

c.
$$\int f(2u-x)dx$$

54.
$$\int_{0}^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx$$
 is equal to

d.
$$\frac{\pi}{2}$$

55. The value of the definite integral $\int |x| dx$ is equal to

56. The length of the cy loid with parametric equation x(t) (t+sin t), y(t) (1-cos t) between ((-0) and (π,2) is

Volume generated by the revolution of the curve $r = a(1 - \cos \theta)$ is

a.
$$\frac{32}{3}\pi a^2$$

b.
$$\frac{32}{5}\pi a^2$$

e.
$$\frac{32}{7}\pi a^2$$

d.
$$\frac{32}{9}\pi a^2$$

58. The series $\sum_{n=0}^{\infty} (2x)^n$ converges

a. for x with
$$-1 \le x \le 1$$

b. for x with
$$-\frac{1}{2} < x < \frac{1}{2}$$

c. for x with
$$-2 \le x \le 2$$

d. for x with
$$+\frac{1}{2} \le x \le \frac{1}{2}$$

59. If p and q are positive real numbers, then the series $\frac{2^F}{1^q} + \frac{3^F}{2^q} + \frac{4^F}{3^q} + \dots$ is convergent for

$$a, p \le q - 1$$

b.
$$p < q + 1$$

- d. p≥q+1
- 60. Which of the following series is not convergent?
 - a. $\frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \dots$
 - b. $1, \frac{1}{2}, 1, \frac{1}{3}+1, \frac{1}{4}+1, \frac{1}{5}+\dots$
 - c. $\frac{1}{2} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{5} + \dots$
 - d. $x + x^2 + x^3 + x^4 + ...$, where |x| < 1
- 61. The general solution of the differential equation $(x + a) p^2 (x y)p y = 0$ is
 - a. $y = ex + \frac{ae^2}{c+1}$
 - b. $y = cx \frac{ac^2}{c+1}$
 - $e. \quad y = -ex + \frac{ac^2}{c+1}$
 - d. $y = -ex \frac{dc^2}{c+1}$
- 62. The homogeneous differential equation M(x, y)dx + N(x, y) dy =0 can be reduced to a differential equation, in which the variables are separated, by the substitution
 - $a_v y = vx$
 - b. xy = y
 - c. $x \pi y = v$
 - d, x-y=v
- 63. The solution of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2 \text{ under the continuou that } y = 1$ when x = 1 is
 - a. 4xy= +
 - b. Axv v v + 2
 - P 4. V V+3
 - $(-4...-y^2+3)$
- 64. The singular solution of $(xp y)^2 = p^2 1$, where p has the usual meaning is
 - a. $x^2+y^2=1$
 - b. $x^2-y^2=1$
 - e. $x^2+y^2=2$
 - d. $x^2-y^2=2$
- The family of straight lines passing through the origin is represented by the differential equation

- a. ydx + xdy = 0
- b. xdx + ydy = 0
- e. xdy ydx = 0
- d. ydy xdx = 0
- The equation y 2x = c represents the orthogonal trajectories of the family
 - a. $y = Ce^{-2x}$
 - b. x2+2y2-C
 - c, xy=C
 - d. x + 2y = C
- 67. The differential equation of a unily of circles having the reasus it was center on the x-axis is
 - $\mathbf{a} = \mathbf{v}^2 \left[1 + \left(\frac{d\mathbf{v}}{d\mathbf{v}} \right)^2 \right] = \mathbf{v}^2$
 - b. $\frac{2}{1} + \left[\frac{dy}{dx} \right] = r^2$
 - $\sqrt{x^2 + y^2} \left[1 + \left(\frac{dy}{dx} \right)^2 \right] = r^2$
 - $d. \quad r^2 \left[1 + \left(\frac{dy}{dx} \right)^2 \right] = x^2$
- 68. The general solution of the differential equation $\frac{d^4y}{dx^4} = 6\frac{d^3y}{dx^3} + 12\frac{d^3y}{dx^2} 8\frac{dy}{dx} = 0$ is
 - a. $y = C_1 + [C_2 + C_4x + C_4x^2]e^{2x}$
 - b. $y=[C_1+C_2x+C_3x^2]e^{2x}$
 - e. $y=C_1+C_2x+C_4x^2+C_4x^3$
 - d. $y=C_1+C_2x+C_3x^2+C_4e^{2x}$
- Two linearly independent solutions of the differential equation
 - $4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0 \text{ are}$
 - a. $e^{-x/2}\cos x$ and $e^{-x/2}\sin x$
 - b. $e^{x/2}\cos x$ and $e^{x/2}\sin x$
 - c. e^{x/2} cos x and e^{-x/2} sin x
 - d. e w cos x and e x sin x
- 70. The particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4 \text{ is}$
 - a. $\frac{x^2}{3} + 4x$

- b. $\frac{x^3}{3} + 4x$
- c. $\frac{x^3}{3} + 4$
- d. $\frac{x^3}{3} + 4x^2$
- A straight line through (4, -3) cuts the axes such that the intercepts are equal in magnitude.
 - a. x y + 1 = 0
 - b. x + y + 1 = 0
 - 6. x + y = 7
 - d. x y = 7
- 72. The lines lx + my + n=0, mx +ny + 1 = 0 and nx + ly + m = 0 (l, m, n are all not all equal, are concurrent if
 - a. $1^2 + m^2 + n^2 = 1$
 - b. lm + mn + nl = 1
 - e. lm + mn + nl = 0
 - d. 1 + m + n = 0
- 73. If the equation

$$hxy + gx + fy + e = 0 (h = 0)$$

represents two straight lines, then

- a. $2fgh = e^2$
- b. 2fg = ch
- e. $fgh = e^2$
- d. fg =ch
- 74. The distance of the po from he line

$$4\cos\theta + 3\sin\theta = \frac{30}{r}$$
 is

- a. 2
- b. 4
- 75. The equation of
- 75 The equation of the circle on the chord x $\alpha + y \sin \alpha - p = 0$ of the circle $x^2 + y^2 - a^2 = 0$, (0 as diameter is
 - a. $x^2+y^2-a^2+2p(x\cos\alpha+y\sin\alpha-p)=0$
 - b. $x^2+y^2-a^2-2p(x\cos\alpha+y\sin\alpha-p)=0$
 - e. $x^2+y^2+a^2-4p (x \cos \alpha + y \sin \alpha + p) = 0$
 - d. $x^2+y^2-a^2+4p(x\cos\alpha+y\sin\alpha-p)=0$
- From a point (x₁,y₁) if perpendicular tangents are drawn to the circle x²+y²=5.

- then which one of the following equations represents the locus of (x_1,y_1) ?
- a. $x^2+2y^2=5$
- b. 2x2+y2-10
- c. $x^2+y^2=10$
- d. $2x^2 + xy + 2y^2 = 5$
- The equation of the common chord of the circles x²+y²-6x=0 and x²+y²-4y= 0 i
 - a. 3x+2y+1=0
 - b. 3x 2y = 0
 - c. 3x + 2y = 0
 - d. 3x 2y 1 = 0
- 78. Let $S_1 = x^2 + y^2 + 2g_1x^2 + 2f_1y + c = 0$
 - S₂= x²+y²+2g₂ x+2f₂y+c₂=0 be two circles. The slope of the radical axis of the two circles is
 - $a_i = \frac{f_1 f_2}{\eta g_2}$
 - b (<u>P1 = g2)</u>
 - c. $-\frac{(f_1-f_2)}{(g_1-g_2)}$
 - d. $-\frac{(g_1-g_1)}{(f_1-f_2)}$
- If λ, μ are parameters the orthogonal coaxal system of the system of circles x²+y²+2λx + c = 0 is
 - a. $x^2+y^2+2\mu y c = 0$
 - b. $x^2+y^2+2\mu y+e=0$
 - e. $x^2+y^2+2\mu x-e=0$
 - d. $x^2+y^2-2\mu x+c=0$
- 80. The condition that the straight line $\frac{1}{r} = \frac{1}{a} \cos \theta + \frac{1}{b} \sin \theta$ may louch the circle $r = 2 \cos \theta$ is
 - a. $\frac{2c}{a} + 1 = \frac{b^2}{c^2}$
 - b. $\frac{2\epsilon}{a} = 1 \frac{\epsilon^2}{b^2}$
 - $C, \quad \frac{2c}{a} = 1 + \frac{c^2}{b^2}$
 - d. $\frac{2a}{\varepsilon} = 1 \frac{e^2}{b^2}$
- 81. The equation of the parabola whose focus is (-3, 0) and the directrix is x+5=0, is
 - $a = x^2 = 4 (y 4)$

- b. $x^2 = 4(y+4)$
- e. $v^2 = 4(x-4)$
- d. v2-4(x+4)
- If the normal at $(x_t, y_t, r = 1,2,3,4)$ on the 82 rectangular hyperbola xy = c2 meet in the point (a, B), then
 - a. $x_1 + x_2 + x_3 + x_4 = \alpha$
 - b. x1+x2+x3+x4=B
 - e. $x_1+x_2+x_3+x_4=\frac{1}{x_1+x_2+x_3+x_4}$
 - d. $x_1 + x_2 + x_3 + x_4 = \frac{1}{\sigma}$
- 83. The lines x = ay + b, z = cy + d and x = a'y+ b' z = e' y+ d are perpendicular if
 - a. aa' a cc' = 1
 - b. aa' + cc' = -1
 - e. bb' = dd' = 1
 - d. bb' + dd' = -1
- + Jev + Jhe -The equation 84. represents a
 - a. sphere
 - b. cylinder
 - c. cone
 - d. pair of planes
- The equation of the cylinder vaice 85. intersects the curve $x^2+y^2+z^2=1$, x=yunt to the =1 and whose generators are ... axis of z, is
 - a. $x^2 + y^2 + xy x y = 0$

 - b. $x^2+y^2+xy+x+y=0$ c. $x^2+y^2-xy+y=0$ d. $x^2+y^2-xy+y=0$
- Which the of he following is a; vector 86. qua 🔫
 - Sp. ed
 - Angular momentum
 - Power
 - d. Potential energy
- 87. The angle between the vectors

$$\overline{A} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
 and $\overline{B} = 6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$ is

- a. 00
- b. 30°
- c. 450
- d. 60°

- 88. If two forces of equal magnitude acting at a point give, as the resultant, a force of same magnitude, then the angle between the two force must be
 - a. 450
 - b. 60°
 - c. 120°
 - d. 1350
- 89. A man carries a bundle at the end of a stick 3/2 metres long, which is laced n his shoulder. In order that me res we on his shoulder may be tree times the weight of the bundle a. tang, between his hand and should r should be
 - a. 0.25 metre
 - b. 0.30 m ac
 - 0.40 m +
 - d. / 50 metre
- 90. the um f the moments of a number of co mar forces about three non-collinear oin s are the same the system shall ace to
 - a. a single force
 - b. a force and a couple
 - c. a couple
 - d. one in equilibrium
- 91. Suppose R is the resultant of a system of several coplanar forces P₁.P₂....P_n acting simultaneously at a point, then

$$R \cos \theta = \sum_{i=1}^{n} P_i \cos \alpha_i = \sum_{i=1}^{n} X_i$$
 and

$$R \sin \theta = \sum_{i=1}^{n} P_{i} \sin \alpha_{i} = \sum_{i=1}^{n} Y_{i}$$

Where $\alpha^1, \alpha^2, \dots, \alpha_n$, θ are the angles which the system of forces P1, P2,....Pn and R makes with the horizontal lie. If the system is in equilibrium, then which one of the following relations is correct?

- a. $\Sigma X_i + \Sigma Y_i = 0$
- Σ X_i Σ Y_i=0
- e. $\Sigma X_i = \Sigma Y_i = 0$
- d. None of the above
- If the forces 6w, 5w acting at a point (2, 92 3) in Cartesian regular co-ordinate are parallel to the positive x and y axis respectively, then the moments of the resultant force about the origin is

- a. 8w
- b. -3w
- c. 3w
- d. -8w
- 93. Two particles of m₁ and m₂ gms projected vertically upwards such that the velocity of projection of m₁ is double that of m₂. If the maximum heights to which m₁ and m₂ rise be h₁ and h₂ respectively, then
 - a. h1 2h2
 - b. 2h₁- h₂
 - c. h1=4h2
 - d. 4h1 = h2
- 94. If a body of mass M kg and at rest is acted upon by a constant force of W kg weight, then in T seconds it moves through a distance of
 - a. $\frac{gTW}{2M}$ meters
 - b. $\frac{eTW^2}{2M}$ meters
 - c. $\frac{g^2 TW}{2M}$ meters
 - d. $\frac{gT^2W}{2M}$ meters
- 95. A particle is describing an ellipse and the force μ/(distance)² towards a focus. If V its velocity at a distance I the as periodic time is
 - a. $\frac{2\pi}{\sqrt{\mu}} \left(\frac{V^2}{\mu} \frac{2}{R} \right)^{\frac{1}{2}}$
 - b. $\frac{2\pi}{\sqrt{\mu}}\left(\frac{\nu^2}{2}\right)^{-\frac{1}{2}}$
 - C 7 (2 11)
 - $\frac{2\pi}{\sqrt{\mu}} \left(\frac{2}{R} \frac{V^2}{\mu} \right)^{-\frac{1}{2}}$
- 96. A particle executing a simple harmonic motion of amplitude 5 cm has a speed of 8 cm/sec when at a distance 3 cms from the center of the path. The period of the motion of the particle will be
 - $a_1 = \frac{\pi}{2} \sec$
 - b. n sec

- c. 2π sec
- d. 4n sec
- 97. A particle of mass m moves in a straight line under an attractive force m μx towards a fixed point O on the line, x being the distance of the particle from O. If x = a at time t = 0, then the velocity of the particle at a distance x is given by
 - a.
 - b. μ(a-x)
 - e. µ(x-a)
 - d. $\sqrt{\mu(a^2 x^2)}$
 - $e = -\sqrt{\mu(a^2 x^2)}$
- 98. In order to keep a body in air above the earth for seep ds, the body should be thrown very ally p with a velocity of
 - a. 6g m/r so
 - o. Vi. sec
 - t m sec
 - . 12 g m/sec
- of If a particle of mass 4 gms moves in a horizontal circle under the action of a force of magnitude 400 dynes towards the center of the circle with a speed 20 cms/sec, then the radius of the circle will be
 - a 2cm
 - b. 4cm
 - c. 8cm
 - d. 10cm
- 100. The escape velocity from the earth is about 11km/second. The escape velocity from the planet having twice the radius and the same means density as the earth is about
 - a. 5,5km/second
 - b. 11 km/second
 - c. 16.5km/second
 - d. 22km/second