MATHEMATICS

- 1. If $z = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$, then $|z^* z|$ is equal to
 - a. 2
 - b 4
 - c 8
 - d 6
- 2. If $A+B=\begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}$ and $A-B=\begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ then A is

equal to

- a. $\begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}$
- b. 0 0
- c. 0 1
- The co-factors of the elements of the second row of the determinant

- a. -39, 3, 11
- b. 6, 5, 4
- c. 3, 11, -39
- d 13, 1, 3
- 4. $\begin{vmatrix} 1 & 1 & 1 \\ a & b & b \\ a^2 & b^2 & c^2 \end{vmatrix}$ is equal to
 - a. (a-b (c-, (c 3)
 - b. (-b)(-c)(c-b)
 - a b
 - la c
- 5. $A = \begin{bmatrix} 3 & 8 \\ 2 & 1 \end{bmatrix}$ then A^{-1} is
 - a. $\frac{1}{13}\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix}$
 - b. $\frac{1}{-13}\begin{bmatrix} 1 & -8 \\ -2 & 3 \end{bmatrix}$
 - $c = \frac{1}{-13}\begin{bmatrix} 3 & 2 \\ 8 & 1 \end{bmatrix}$
 - d. $\frac{1}{13}\begin{bmatrix} 1 & -8 \\ -2 & 8 \end{bmatrix}$

 The value of α for which the system of equations x+y+z=0

$$y + 2z = 0$$

 $\alpha x + z = 0$ has more than one solution as

- a. -1
- b. 0
- c. $\frac{1}{2}$
- d 1
- 7. If $[\gamma]$ denotes the gloatest integer less than or equal to the real proper x, then the range of the fraction f(x)=1+x[x-3] is
 - a. [4, 5]
 - b. 1/. x
 - c. 1 e set 2 of all integers
 - d. the seal R of all real numbers
- 8 White of the following statements is/are
 - The sum and difference of any two irrational numbers need not be irrational.
 - Product of any two irrational numbers is irrational
 - For any two distinct irrational numbers a and b, the number a/b is irrational

Select the correct answer using the codes given below:

- a. 1, 2 and 3
- b. 1 and 2
- c. 2 and 3
- d. I alone
- $\lim_{n\to\infty} \left\{ \left(1 + \frac{1}{n}\right)^n \pm \left(1 + \frac{1}{n}\right)^{-\sigma} \right\}$
 - a. exists and is equal to 0
 - b. does not exist
 - c. exists and is equal to $e + \frac{1}{e}$
 - d. exists and is equal to e
- 10. Consider the following statements:

If $f(x) = \begin{cases} x & 0 \le x < 1 \\ 3 - x & 1 \le x \le 2 \end{cases}$, then

- 1. $\lim_{x\to 1} f(x)=1$
- 2. $\lim_{x\to 1+} f(x) = 2$

3.
$$\lim_{x \to \infty} f(x) = 2$$

Of these statements

- a. 1 and 3 are correct
- b. 1, 2 and 3 are correct
- c. 1 and 2 are correct
- d. 2 alone is correct
- A function which is continuous nowhere on R but is bounded on R is f defined by
 - a. f(x) = x, x rational; f(x) = x, x irrational
 - b. $f(x) = n, n \le x \le n+1, n \in \mathbb{Z}$
 - e. f(x) = 1, x rational; f(x) = 1, x irrational
 - d. $f(x) = 1, x = n, n \in \mathbb{Z}$; f(x) = 0 otherwise
- 12. Let D = $\{f \mid f \text{ is differentiable on } (0, 1)\}$ C= $\{f \mid f \text{ is continuous on } (0, 1)\}$, then
 - a. C∩D = 6
 - b. CoD
 - e. C= D
 - d. DCC
- 13. Let f, g, h, k be differentiable in (a, b), if F
 - is defined as $F(x) = \begin{cases} f(x) & g(x) \\ h(x) & k(x) \end{cases}$ for all x

∈(a,b) then F'(x) is given by

- a. $\begin{cases} f'(x) & g(x) \\ h(x) & h(x) \end{cases} + \begin{cases} f(x) & g(x) \\ h'(x) & h(x) \end{cases}$
- b. $\begin{cases} f'(x) & g'(x) \\ h(x) & k(x) \end{cases} + \begin{cases} f'(x) & g(x) \\ h(x) & k'(x) \end{cases}$
- e. $\frac{f(x)}{h(x)} \frac{g'(x)}{h(x)} + \frac{f'(x)}{h(x)} \frac{g(x)}{h(x)}$
- d. $\frac{f(x)}{h'(x)} \frac{g(x)}{h'(x)} + \frac{f'(x)}{h(x)} \frac{g(x)}{h(x)}$
- 14. The slope of the curve $y = ae^{x/b}$ at the point who sit ross is the y-axis is
 - a.
 - b. 4
 - $\frac{k}{a}$
 - d. h
- 15. The derivative of the function x is
 - a. x x x -1
 - b. $x^{x}(\log x + 1)$
 - e. x* log x
 - d. $x^x + x \log x$

- 16. If $y = \log_{11} v$, where u and v are function of x, then $\frac{dy}{dx}$ is equal to
 - $\mathbf{a}_i = \frac{-\log v}{u(\log u)^2} \frac{du}{dx} + \frac{1}{v(\log u)} \frac{dv}{dx}$
 - b. $\frac{1}{v} \frac{dv}{dx} + \log v \frac{du}{dx}$
 - $c = \frac{1}{v} \frac{dv}{ds}$
 - d. $\frac{1}{u} \cdot \frac{dv}{dx} = \frac{1}{v} \cdot \frac{dv}{dx}$
- 17. If x^m , $y^n = (x + y)^{m + n}$, then
 - $a, \frac{x}{y}$
 - b. +
 - c. Ix
 - d.
- 18. If the are quadratic function defined on [a, 1/b] $f(x) = \alpha x^2 + \beta x + \gamma$, $\alpha = 0$, then be real number 'e' guaranteed by the Lagrange's Mean Value theorem is equal to
 - a. $\frac{(a+b)}{2}$
 - b. (ab)
 - c. $\frac{2ab}{(a+b)}$
 - $d = \left(\frac{a}{b} + \frac{b}{a}\right)$
- 19. The sum of the series $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$ is
 - a. a positive integer
 - b. a negative integer
 - c. a proper fraction
 - d. an irrational number
- Which one of the following statements is correct for the function f(x) = x³?
 - a. f(x) has a maximum at x = 0
 - b. f(x) has a minimum at x=0
 - c. f (x) has neither a maximum nor a minimum at x =0
 - d. f(x) has no point of inflexions
- 21. The tangent to the curve $y = 2x^3 x^2 + 3$ at the point (1,4) passes through
 - a. (0,0)
 - b. (1, 3)
 - c. (2,4)

d. (2, 3)

- 22. The value of p for which the radius of curvature of the curve x = 2py at the point (0, 0) is 3, is:
 - a. 1
 - b. 2
 - c. 3
 - d. 4
- 23. If $u = (x^2 + y^2 + z^2)^{1/2}$, then $\left(\frac{\partial^3 u}{\partial x^2} + \frac{\partial^3 u}{\partial y^2} + \frac{\partial^3 u}{\partial z^3}\right)$ is equal to
 - a. 4u
 - b. 2/u
 - c. 2u
 - d. u/4
- 24. If $z = f(x + ay) + \phi(x ay)$, then:
 - $\mathbf{a}, \quad \frac{\partial^2 z}{\partial x^2} = \alpha^2 \frac{\partial^2 z}{\partial y^2}$
 - b. $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$
 - c. $\frac{\partial^3 z}{\partial y^2} = \frac{1}{a^2} \frac{\partial^2 z}{\partial y^3}$
 - $\mathbf{d}_{x} = \frac{\partial^{3} z}{\partial x^{2}} = -a^{4} \frac{\partial^{2} z}{\partial y^{2}}$
- 25. The points of inflextion of the every y=3x²-4x³ correspond to
 - $a = x = \frac{2}{3}, x = 0$
 - b. $x = \frac{1}{3}, x = \frac{2}{3}$
 - e. x = 0 , x = 1
 - d. x = 1, x = 2
- 26. Figure

O

x

The parametric equations of the given curve are

$$a. \quad x = a(t - \sin t)$$

$$y = a(1-\cos t)$$

b.
$$x = a(t + \sin t)$$

- c. $x = a (t \sin t)$
 - $y = a (1 + \cos t)$
- d. $x = a(t + \sin t)$
 - $y = a(1 + \cos t)$
- 27. The value of far do is
 - a. -1
 - b. 1
 - c. c
 - d. 2e
- 28. $\int_{0}^{2a} f(x)dx = 2\int_{0}^{a} f(x)dx$
 - a. is always true
 - b. is true only when (x) = f(a+x)
 - c. is true only when f(x) = (2a x)
 - d. is true only when f(2a-x) = -f(x)
- 29. Let fire be coursed and integrable on [a,
 - b] a. I let $F(x) = \int f(t)dt$, $a \le x \le b$, then
 - a (f(x) is continuous at a point c of [a, 1] then F'(c)=f(c)
 - b. continuity of f (x) on [a, b] does not imply derivability of F(x) on [a, b]
 - F(x) is not uniformly continuous on [a, b]
 - d. A continuous function f (x) may not possess a primitive F(x)
- 30. $\int_{0}^{\pi} \cosh \frac{y}{a} dy$ is equal to
 - a. $a \sin h \frac{y}{a}$
 - b. $-\frac{1}{a} \sin h \frac{x}{a}$
 - c. $a \sin h \frac{x}{a}$
 - d. $\frac{1}{a} \sin h \frac{x}{a}$
- For definite integrals, the formula of integration by parts is
 - $\mathbf{a}, \quad \int u \, dv = u v \int_{0}^{b} + \int v \, du$
 - $b_* = \int\limits_{0}^{h} u \, dv = uv \int\limits_{0}^{h} + \int\limits_{0}^{h} v \, du$
 - C. $\int u \, dv = uv \int \int v \, du$
 - $d. \quad \int_{\mathbb{R}^n} u \ dv = uv \int_{\mathbb{R}^n} + \int_{\mathbb{R}^n} v \ du$

- 32. The correct value of the volume of the prolate spheroid formed by the revolution of the ellipse $\frac{3^2}{a^2} + \frac{y^2}{b^2} = 1$ about x -axis is
 - $a, \quad \frac{1}{3}\pi a^2 b$
 - b. $\frac{2}{3}\pi a^2 b^2$
 - $c = \frac{4}{\sqrt{3}}\pi ab^2$
 - $d = \frac{4}{3}\pi ab^2$
- 33. The length of the arc of the curve $6xy = x^4+3$ from x=1 to x=2 is
 - a. $\frac{13}{12}$ units
 - b. $\frac{17}{12}$ units
 - e. $\frac{19}{12}$ units
 - d. None of the above
- 34. The volume of ellipsoid $\frac{s^2}{a^2} + \frac{s^2}{b^2} + \frac{s^2}{c^2} = 1$ is
 - a. $\frac{4}{5}$ π abe cubic units
 - b. $\frac{4}{3}\pi$ abe cubic units
 - e. 4π abe cubic units
 - d. None of the above
- For a positive term series Σα_n the (at)
 Test states that
 - a. the series converge if $\lim_{n \to \infty} \frac{d^{n-1}}{d_n} > 1$
 - b. the series converges if $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$
 - e. the period diverges if $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = 1$
 - d N me the above
- 36. The series $x = \frac{x^2}{2} + \frac{x^4}{3} + \frac{x^4}{4} + \dots$ is
 - c. vergent for
 - a. all real values of x
 - b. |x| < 1 only
 - c. $|x| \le 1$
 - d. -1 < x ≤ 1
- The differential equation of the system of circles touching the y-axis at the origin is
 - a. $x^2+y^2-2xy \frac{dy}{dx}=0$

- b. $x^2 + y^2 + 2xy \frac{dy}{dx} = 0$
- $c. \quad x^2 y^2 = 2xy \frac{dy}{dx} = 0$
- d. $x^2-y^2-2xy \frac{dy}{dx} = 0$
- The differential equation M(x, y) dx + N(x, y)dy =0 is an exact equation if
 - $\mathbf{a}, \quad \frac{\partial M}{\partial y} \frac{\partial N}{\partial x} = 0$
 - b. $\frac{\partial M}{\partial y} \frac{\partial N}{\partial x} = 0$
 - c. $\frac{\partial N}{\partial y} + \frac{\partial M}{\partial x} = 0$
 - d. $\frac{\partial N}{\partial y} = \frac{\partial A}{\partial y} = 0$
- The equation of (4x + 3y + 1) dx = (3x + 2y + 1) dy = 0 represents a family of
 - a reles
 - . 1 arabolas
 - c. ellipses
 - d. hyperbolas
- 40. The general solution of the differential equation (x²+y²)dx 2xy dy =0 is
 - a. x²-cx y²=0 , where c is an arbitrary constant
 - b. (x-y)²=ex, where e is an arbitrary constant
 - c. x+y+2xy = c, where c is an arbitrary constant
 - d. y= x²-2x+e, where e is an arbitrary constant
- 41. The general solution of the differential

equation
$$y = x \left(\frac{dy}{dx} \right) + \left(\frac{dy}{dx} \right)^2$$
 is

- a. $y = ex e^2$, e is an arbitrary constant
- b. y = ex +e, e is an arbitrary constant
- e. y=ex-e, e is an arbitrary constant
- d. $y = ex + e^2$, e is arbitrary constant
- The singular solution of the differential equation (xp y)²=p²-1 is
 - a. $x^2+y^2=1$
 - b. $x^2-y^2=1$
 - e. $x^2 + 2y^2 = 1$
 - d. $2x^2+y^2=1$

- 43. The orgthogonal trajectories of the parabolas y²=4a(x + a), a being the parameter, are the curves given by
 - a. y2=4b(x+b), b being a parameter
 - b. y2=4b(x+b),b being a parameter
 - e. y2=4bx, b being a parameter
 - d. x2=4by, being a parameter
- 44. The general solution of the differential equation $\frac{d^4y}{dx^4} + 2\frac{d^4y}{dx^2} + y = 0$
 - a. $y = (e_1 + e_2) \sin x + (e_3 + e_4) \cos x$
 - b. $y=c_1 \sin x + c_2 \cos x + x \sin x + x \cos x$
 - e. $y = c_1 \sin x + c_2 \cos x + c_3 \tan x + c_4 \cot x$
 - d. $y = c_1 \sin x + c_2 \cos x + c_3 x + c_4$
- The general solution of the differential equations (D²+D-2)y = e^x is given by
 - $a, \quad y = c_1 e^x + c_2 e^{-2x} + \frac{1}{3} x e^x$
 - b. $y = e_1 e^{x} + e_2 e^{-2x}$
 - e. $y=e_1e^2+e_2e^{-2x}+\frac{1}{6}x^2e^4$
 - d. $y = \frac{1}{3}xe^{x} + (c_1 + c_2x)e^{-2x}$
- 46. A particular integral of the differential equation $\frac{d^2y}{dx^2} + a^2y = \sin ax$ is
 - a. $\frac{1}{2a}\cos ax$
 - b. $-\frac{1}{2a}x\cos ax$
 - c. $\frac{1}{2a} \times \cos 2ax$
 - $d = \frac{1}{2\pi} \cos x$
- 47. PQR If the slope of side PR is twice the slope of the side QR, then the news of the third vertex R is
 - a. $x^2 + y^2 5y + 2x 14 = 0$
 - b. 2x + 5y 14 = 0
 - e. x = 4, y = 1
 - d. xy + 2x + 5y 14 = 0
- 48. If the three lines x+y = 1, x y = 5 and 2x + 3y = k are concurrent then the value of k is
 - a. 1

- b. -1
- c. 0
- d. 2
- 49. The straight lines represented by the equation $(x^2 + y^2) \sin^2 \alpha (x \cos \theta y \sin \theta)^2$ are inclined to each other an angle
 - a. 2a.
 - b. $\frac{\pi}{2} + 0$
 - c. a
 - d. 😤
- 50. If $\lambda x^2 = 10xy = 12y^2 = 5x = 16y = 3 = 0$ represents a pair of the streight lines, then the value of λ is
 - a. 1
 - 2
 - c. 3
 - d.
- 51. . . . co. 12 on for the two circles
 - $y^2+5k_1x+k^2=0$ and
 - $(x^2+y^2+5k_2y+k^2=0)$

to touch each other externally is

- a. $k_1^2 + k_2^2 = k^2$
- b. $k_1^2 k_2^2 = k^2$
- C. $k_1^2 + k_2^2 = k^2$
- $d_1 = k^2(k_1^2 + k_2^2) = k_1^2k_2^2$
- 52. The locus of the point of intersection of two normals to the parabola y²=4ax which are at right angles to one another is
 - a. $y^2 = a(x-2a)$
 - b. $y^2 = a(x+2a)$
 - e. $y^2 = a(x-3a)$
 - d. $y^2 = a(x+3a)$
- 53. If the locus of the point of intersection of perpendicular tangents to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a circle with center at (0, 0) then the radius of the circle would be
 - a. a+b
 - b. ab
 - c b/a
 - d. $\sqrt{a^2+h^2}$
- 54. The center of the hyperbola 2x²+y²-3xy-5x + 4y+6=0 is the point
 - a. (1, 2)
 - b. (21)

- c. (1, 1)
- d. (2, 2)
- 55. The circles $\gamma = a \cos \theta(\theta \alpha)$ and $\gamma = b \sin \theta(\theta \alpha)$ cut each other at an angle of
 - a. 90°
 - b. 60°
 - c. 45°
 - d. 30°
- 56. The parametric equations $x = \frac{u}{2} \left(i + \frac{1}{i} \right)$,
 - $y = \frac{b}{2} \left(t \frac{1}{t} \right)$ represents
 - a. an ellipse
 - b. a hyperbola
 - e. a parabola
 - d. a circle with center at origin
- A straight line passes through the point (2, -1, -1). It is parallel to the plane 4x + y + z + 2=0 and is perpendicular to the line

$$\frac{x}{1} = \frac{y}{-2} = \frac{z-5}{1}$$

The equations of the straight line are:

- a. $\frac{x-2}{4} = \frac{y+1}{1} = \frac{z+1}{1}$
- b. $\frac{x+2}{4} = \frac{y-1}{1} = \frac{x-1}{3}$
- $0. \quad \frac{y-2}{-1} = \frac{y+1}{1} = \frac{z+1}{3}$
- $d_1 = \frac{x+2}{-1} = \frac{y-1}{1} = \frac{z-1}{2}$
- 58. Perpendicular is drawn from the point (0, 3, 4) to the plane 2x 2x 12 10. The coordinates of the for of the perpendicular art:
 - a. $\left(-\frac{8}{3}, \frac{1}{1}, \frac{16}{3}\right)$
 - b. $\left(-\frac{8}{3}, \frac{10}{3} \right)$

 - $\left[-\frac{8}{3},\frac{1}{3},\frac{16}{3}\right]$
- 59. A sphere $x^2+y^2+z^2=9$ is cut by the plane x + y + z = 3. The radius of the circle so formed is
 - n. J6
 - b. √3
 - c. 3
 - 1 6

- The equation fyz + gzx + hxy =0 represents a
 - a. a pair of planes
 - b. sphere
 - c. cylinder
 - d. cone
- 61. The equation of a cylinder, whose generating lines have the direction comes (l,m,n) and which passes through the fixed circle x²+z²-a² in the ZOX plane is
 - a. $(mx ly)^2 + (mz ny)^2$
 - b. $(mx-ly)^2+(mz-ny)^2=a^2n^2$
 - e. $(ly-my)^2+(ny-mz)^2 l^2 n$.
 - d. $(mx+ly)^2+(mz+ly)^2-a^2$
- 62. If there vector A.E.C are such that A.B.C, there
 - a. A.C =
 - b. F. C=0
 - c. . C = .C
 - d. Lt -B.C
- he esultant of two forces P and Q is R. If of the forces is reversed in direction, the resultant becomes R', then
 - a. $R^2 = P^2 + Q^2 + 2PQ \cos \alpha$
 - b. R'2=P2-Q2-2PQ cos α
 - e. $R^2+R^2=2(P^2+Q^2)$
 - d. $R^2+R^{2}=2(P^2-Q^2)$
- 64. Two weights of 10 gms and 2 gms hang from the ends of a uniform lever one meter long and weighing 4 gms. The point in the lever about which it will balance is from the weight of 10 gms at a distance of
 - a. 5 cm
 - b. 25 cm
 - c. 45 cm
 - d. 65 cm
- The angle between two forces F and 2F acting at a point when the resultant is perpendicular to F is
 - a. 60°
 - b. 135°
 - c. 120°
 - d. 150°
- If a body is in equilibrium under the action of three coplanar forces, then
 - a. they must act in a straight line
 - b. they must meet in a point

- c. their horizontal and vertical components must be equal
- d. none of the above
- 67. If a particle moves in one dimension under the potential energy V= V₀(e^{-ix}+bx) where V₀ a, b are positive constants, then the nature of the equilibrium position is
 - a. unstable
 - b. stable
 - c. neutral
 - d. undecided
- 68. Which one of the following statements is correct?
 - Newton's three laws of motion are independent
 - First law of motion is contained in the second law as a special case
 - Second law of motion can be deduced from the third law
 - Third law of motion can be deduced from the second law.
- Newton's second law of motion is given by
 - a. velocity = $\frac{max}{force}$
 - b. acceleration = moving meas moving force
 - c. acceleration = moving force mass moved
 - d. none of the above
- 70. The pedal equation of the 1 th o a central orbit is
 - a. $F = \frac{h^3}{p^3} \frac{dr}{dp}$
 - $b_i \quad F = \frac{h^2}{2} \frac{dp}{dp}$
 - $c. r = \frac{dp}{r}$
 - $\Gamma = \frac{h^2}{p^2} \frac{d^2p}{dr^3}$
- For the motion of a particle in plane in a central orbit, the angular velocity of the particle varies
 - a. inversely as the distance
 - b. inversely as the square of the distance
 - e. directly as the distance
 - d. directly as the square of the distance
- 72. A particle executing a simple harmonic motion has acceleration 8cm/sec² when it

- is at a distance 2 cm from the center. The time period will be
- a. $\frac{1}{\pi}$ seconds
- b. $\frac{1}{\pi}$ seconds
- c. seconds
- d. n seconds
- 73. A particle is projected from a point of the x-axis in the vertical x-y place. If the trajectory above the x-axis is given by x² + 4y 8 = 0, then the velocity of projection is
 - a. √3g
 - b. √4g
 - c. √5g
 - d. Jan
- 74. A p rticle noving along a circular path
 - a . not accelerated
 - as a constant velocity
 - c. has radial acceleration away from the
 - d. has radial acceleration towards the
- 75. If a particle moves along a circle of radius 'a' so that r = a, then transverse velocity is equal to
 - a. a de
 - b. $r \frac{d\theta}{dt}$
 - $e, \frac{dt}{dt} \cdot \theta$
 - d. $\frac{d\sigma}{dt}$.0
- 76. The escape velocity for a body projected vertically upwards is 11.2 kg/sec. If the body is projected in a direction making angle of 60° with the vertical, then the escape velocity will be
 - a. 11.2 km/sec
 - b. 5.6√3 km/sec
 - e. 5.6 km/sec
 - d. none of the above
- 77. Which of the following statements are correct for the integers p , m and n?
 - 1. if p < m then m ∉p.

- 2. if p = m, then either m p or p m
- 3. $mn \le mp$ if and only if $n \le p$
- mn < mp if and only if n < p, provided m = 0

Select the correct answer using the codes given below:

- a. 2 and 4
- b. 1 and 2
- c. 1, 2 and 4
- d. 1, 2 and 3
- 78. Consider the following numbers:

$$\pi, \frac{22}{7}, \frac{223}{71}$$

The correct sequence in increasing order would be:

- a. π , $\frac{22}{7}$, $\frac{223}{71}$
- b. $\pi \cdot \frac{223}{71}, \frac{22}{7}$
- e. $\frac{223}{71}$, π , $\frac{22}{7}$
- d. $\frac{223}{71}$, $\frac{22}{7}$, π
- 79. If n is a positive integer, the $\sqrt{n+1} + \sqrt{n-1}$ is
 - a. rational for only one value of n
 - b. rational for more than one v lue con
 - e. rational for no value of n
 - d. rational for at least me due of n
- 80. If w be an imaginary was 1 of of unity, then (1-w+w²) (1+w-w) is equal to
 - a. 64
 - b. 32
 - c. 16
 - d
- 81. The conjugate of $(1+i)^2$ is given by
 - 4 (1+i)⁻¹
 - e: =2i

 - d. 2i
- 82. If m and x be positive integers a and b such that a = b (mod m), then consider the following statements:
 - 1. $a + x \equiv b + x \pmod{m}$
 - 2. $a \cdot x = b x \pmod{m}$
 - 3. $ax = bx \pmod{m}$

- 4. $a^x = b^x \pmod{m}$
- Of these statements
- a. Only one of the statement is correct
- b. Only two of the statements are correct.
- c. Only three of the statements are correct
- d. All the statement are true
- The equation, in the set of integers 2x = 3 (modulo 20) has
 - a. a unique solution
 - b. no solution
 - e. infinite number of solv ions
 - d. only 2 solutions
- 84. Consider the following statements:
 - 1. if d is g.c.d. of in overy a and k, then d = mh +nk, where m and n are uniquely determined
 - 2. if h and k ar primes and m lik, then

Of the sest; ements;

- a. 'is true, but 2 is false
- . 7 is true, but 1 is false
- c. both 1 and 2 are true
- d. both 1 and 2 are false
- 85. If the quotient on dividing

 $x^4+2x^3+2x^2-3x=1$ by x+2 is x^3+2ax^2+2bx +c, then the values of a, b, c are respectively.

- a. 1,2, 7
- b. 0, 2, 7
- c. 0, -2, 7
- d. 0, 1, -7
- 86. If a(x)=x²+2x+3, b(x)=3x²+2x and c(x)=2x+2 be three members of the ring I₄(x) over the ring I₄ of integers modulo 4, then consider the following statements:
 - 1. deg[a(x)+b(x)] = 0
 - deg [c(x)]=0
 - 3. deg[a(x)b(x)]=4

Of these statements:

- a. I and 2 are correct
- b. 1 and 3 are correct
- e. 2 and 3 are correct
- d. 1,2 and 3 are correct
- 87. The G.C.D. and L.C.M of f(x) and g(x) are respectively x^2+x-2 and $x^4+3x^3-3x^2-7x+6$. If $f(x) = x^3+4x^2+x-6$, then g(x) is
 - a. x3-3x2+2
 - b. x3-3x2-2

- e. $x^3 3x + 2$
- d. x3-3x-2
- 88. If α , β , γ are the roots of the equation $x^3+px^2+qx+r=0$, then the value of $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$ is
 - $a_r + pq$
 - b. $t^2 pq$
 - $e. r^2 + pq$
 - d, r-pq
- 89. If x + y + z = 6 and x y + yz + zx = 10, then the value of $x^3 + y^3 + z^3 3xyz$ is
 - n. 56
 - b. 36
 - c. 26
 - d. 16
- 90. If the roots of the equation

$$x^4-6x^3-38x^3-3x+17=0$$

are greater by k than the roots of the equation x^4 - $22x^3$ + $130x^2$ -243x+61=0, then value of k would be

- a. 4
- b. -4
- c. 6
- d. -6
- 91. Given that x^2+1 is a factor, the number of real roots of the equation $2x^4-11x^3+17x^2$ 11x+15=0 is
 - a. 0
 - h 1
 - 2
 - d. 4
- 92. The equation $x^3 + x^2 (ax + b) = 0$ has a repeated root. The roots
 - a. 2 repeated twice
 - b. 2 repeated th. ce
 - e. -5 repeat . 'w re
 - d. -5 rs, ster three
- 93. Let U = 1, 2,8} be a universal set and (3, 3, 2,3,4) and B={2,4,5,7} be subset of U = then A^C B^C is equal to
 - {1,...3,0,5,6,7,8}
 - 6 {1.3.4.6.7.8}
 - e. {1.3,5,6,8}
 - d. (1.3.5,6,7.8)
- 94. If A= {1,2,5,6} and B={1,2,3},then (A*B)=(B=A) is
 - a. {(1,1)(1,2)(2,1)(2,2)}
 - b. {(1,1)(2,2)(5,1)(1,6)}
 - e. ((1, 1)(2,1)(6,1)(3,2))
 - d. ((2,3)(3,1)(3,2)(5,3))

- 95. On the set R of real number we define x-y if and only if xy ≥ 0, then the relation
 - a. reflexive but not symmetric
 - b. symmetric but not transitive
 - c. transitive but not reflexive
 - d. an equivalence relation
- 96. If f(x+1)-2f(x)+f(x-1)=2 for all x, then
 - a, f(x) = -x
 - b. f(x) = x
 - c. $f(x) = x^3$
 - d. $f(x) = -x^2$
- 97. Consider the statements
 - Two equivalence classes are either identical or the have a vacuous intersection
 - 2. The quotie set of a set S relative to an equal relation is a subset
 - 3 The partition of a set S into disjoint subsets defines an equivalence relation

nese statements

- a. 1 and 2 are correct
- b. 1 and 3 are correct
- c. 2 and 3 are correct
- d. 1, 2 and 3 are correct

On the set of integers define a relation R by setting (a, b)∈R, if and only if a² and b² are not prime to each other.

The relation is not a equivalence relation because if fails to be

- a. Reflexive
- b. Symmetric
- e. Anti-symmetric
- d. Transitive
- Consider A={3n:n∈Z}

The subgroups of the additive group Z is

- a. (A.B.+)
- b. [A/B.+]
- c. [A B. 1
- d. (A B..)
- 100. If Q and Z are the sets of rational numbers and integers respectively, then which one of the following triplets is a field?
 - a. (Q. +. •)
 - b. (Q. . •)
 - c. (Z.+. .)
 - d. (Z, -, •)