FACULTY RECRUITMENT TEST CATEGORY-C Formal School Education/XI, XII PHYSICS PAPER - A

Time: 1 Hour
Maximum Marks: 40

Instructions

* Attempt all questions.
* Paper 1 has Two Parts I and II. Each question of Part I carries 2 marks and each question of part II caries 5 marks.
* Calculators and log tables are not permitted.

PART - I

1. A research satellite of mass 200 kg circles the earth in an orbit of average radius $3 R / 2$, where R is the radius of the earth. Assuming the gravitational pull on a mass 1 kg on earth's surface to be 10 N , Calculate the pull on the satellite.
2. A 40.0 kg boy is standing on a plank of mass 160 kg . The plank originally at rest, is free to slide on a smooth frozen lake. The boy walks along the plank at a constant speed of $1.5 \mathrm{~m} / \mathrm{s}$ relative to the plank. Calculate the speed of the boy relative to the ice surface.
3. A solid uniform ball having volume V and density ρ floats at the interface of two immiscible liquids as shown in the figure. The densities of the upper and the lower liquids are ρ_{1} and ρ_{2} respectively such $\rho_{1}<\rho<\rho_{2}$. What fraction of the volume of the ball will be in the upper liquid and what fraction in the lower one?

4. A piece of metal weighs 210 g in air, 180 g in water and 120 g in liquid. Calculate specific gravity of metal and liquid.
5. A cylinder is made up of two materials. The core part has radius R and thermal conductivity K_{1}. The remaining a part has outer radius $2 R$ and thermal conductivity K_{2}. Find an expression for effective thermal conductivity K of the composite cylinder between its ends.
6. A container of volume $0.02 \mathrm{~m}^{3}$ contains a mixture of neon and argon gases at a temperature of $27^{\circ} \mathrm{C}$ and pressure of $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The total mass of the mixture is 28 g . If the molecular weights of neon and argon are 20 and 40 respectively, determine the masses of the individual gases in the mixture, assuming them to be ideal. $(\mathrm{R}=8.314 \mathrm{~J} /$ mole K$)$
7. A person throws vertically up n balls per second with the same velocity, He throws a ball whenever the previous one is at its highest point. Calculate the height to which the balls rise.
8. A block of mass m is placed on a smooth horizontal surface. A force making an angle θ with the horizontal starts acting on the block. The magnitude of the force is constant but its direction with the horizontal changes as $\theta=a+b s$, where a and b are constants and s is the distance covered by the block. If $|F|=2 \mathrm{mb}$, find the velocity of the block as a function of the angle θ.
9. How many photons are emitted per second by a 5 mW laser source operating at 632.8 nm ?
10. What is the energy and wavelength of a thermal neutron at a temperature of $20^{\circ} \mathrm{C}$.

PART - II
11. Two parallel vertical metallic rails $A B$ and $C D$ are separated by 40 cm . They are connected at the two end by resistances R_{1} and R_{2} as shown A metallic bar of length ℓ mass 100 g slides along the rails without friction. A uniform magnetic field of 0.5 T perpendicular to the plane of the rails is established. It is found that when the bar attains the terminal velocity, the powers dissipated in R_{1} and R_{2} are 0.50 W and 0.75 W respectively. Find the terminal velocity of the bar and values of R_{1} and R_{2}. Neglect the resistances of the bar and the rails.

12. A wooden cylinder of diameter $4 r$, height h and density $\rho / 3$ is kept on a hole of diameter $2 r$ of a tank, filled with water of density ρ as shown in the figure. The height of the base of cylinder from the base of tank is H .
(a) If level of liquid starts decreasing slowly when the level of liquid is at a height h_{1} above the cylinder, the block just starts moving
 up. What is the value of h_{1} ?
(b) Let the cylinder is prevented from moving up, by applying a force and water level is further decreased. Then, calculate the height of water level (h_{2} in figure) for which the cylinder remains in original position without application of force.
13. A thin non conducting ring of radius R is placed in the $X Y$ plane. The charge is distributed along the ring with density. $\lambda=\lambda_{0} \cos \theta$ where λ_{0} is a constant and θ is the angle made by a radius vector with positive direction of X axis. Find the electric field intensity at the centre of the ring.
14. (a) A double convex lens has focal length 25.0 cm . The radius of one of the surfaces is double of the other. Find the radii of curvature if the refractive index of the material of the lens is 1.5 .
(b) A particle executes a simple harmonic motion of amplitude 1.0 cm along the principal axis of a convex lens of focal length 12 cm . The mean position of oscillation is at 20 cm from the lens. Find the amplitude of the image of the particle.

