VITEEE Physics 2012

1.	The potential of the electric field produced by point charge at any (x,y,z) is given by $V=3x^2+5$, where x,y are
in	meters and V is in volts. The intensity of the electric field at (-2,1,0), is

- (a) $+17 \text{ Vm}^{-1}$ (b) -17 Vm^{-1}
- (c) +12 Vm⁻¹ (d) -12 Vm⁻¹
- 2. The potential of a large liquid drop when eight liquid drops are combined is 20 V. Then the potential of each single drop was
 - (a) 10 V (b) 7.5 V
 - (c) 5 V (d) 2.5 V
- 3. A and B are two metals with threshold frequencies 1.8×10^{14} Hz. Two identical photons of energy 0.825 eV each are incident on them. Then photoelectrons are emitted by

(Take $h = 6.6x10^{-34} J-s$)

- (a) B-alone (b) A alone
- (c) Neither A nor B (d) Both A and B
- 4. In the Wheatstone's network given, $P=10\Omega$, $Q=20\Omega$, $R=15\Omega$, $S=30\Omega$, the current passing through the battery (of negligible internal resistance) is

TIM

- (a) 0.36
- Α
- (b) Zero
- (c) 0.18 A
- (d) 0.72 A
- 5. Three resistors 1Ω , 2Ω and 3Ω are connected to form a triangle. Across 3Ω resistor a 3 V battery is connected. The current through 3Ω resistor is
 - (a) 0.75 A (b) 1 A
 - (b) 2 A (d) 1.5 A
- 6. In a common emitter the input signal is applied across
 - (a) anywhere (b) emitter-collector
 - (c) collector-base (d) base-emitter

7. The kinetic energy of an electron get tripled then the de-Broglie wavelength associated with it changes by a factor

(a) $\frac{1}{3}$ (b) $\sqrt{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) 3

 $8.\,\,$ A radioactive substance contains 10000 nuclei and its half-life period is 20 days. The number of nuclei present at the end of 10 days is

(a) 7070 (b) 9000

(c) 8000 (d) 7500

9. A direct X-ray photograph of the intensities is not generally taken by radiologists because

(a) intensities would burst an exposure to X-rays

(b) The X-rays would be not pass through the intenstines

(c) The x-rays will pass through the intenstines without causing a good shadow for any useful diagnosis

(d) A very small exposure of X-rays causes in the in the intenstines

10. Charge passing through a conductor of cross-section area $A=0.3 \text{ m}^2$ is given by $q=3t^2+5t+2$ in coulomb, where t is in second. What is the value of drift velocity at t=2 s? (Given, $n=2x10^{25}/m^3$)

(a) $0.77 \times 10^{-5} \text{ m/s}$ (b) $1.77 \times 10^{-5} \text{ m/s}$

(c) $2.08 \times 10^{-5} \text{ m/s}$ (d) $0.57 \times 10^{-5} \text{ m/s}$

11. Two capacitors of capacities 1 μF and C μF are connected in series and the combination is 80 μC , the energy stored in the capacitor of capacity C in μJ is

(a) 1800 (b) 1600 (c) 14400 (d) 7200

12. A hollow conducting sphere is placed in an electric field produced by a point charge placed at p as shown in figure. Let V_{A} , V_{B} , V_{C} be the potentials at points A,B and C respectively. Then

(a) $V_C > V_B$ (b) $V_B > V_C$

(c) $V_A > V_B$ (d) $V_A = V_C$

- 13. In a hydrogen discharged tube it is observed that through given cross-section $3.13x10^{15}$ electrons are moving from right to left and $3.12x10^{15}$ protons are moving from left to right. What is is the electric current in the discharged tube and what is its direction?
 - (a) 1 mA towards right

(c) 2 mA towards left

(d) 2 mA towards right

14. In $CuSO_4$ solution when electric current equal to 2.5 faraday is passed, the gm equivalent deposited on the cathode is

(a) 1 (b) 1.5 (c) 2 (d) 2.5

15. In hydrogen a atom, an electric is revolving in the orbit of radius 0.53 Å with 6.6×10^{15} radiations/s. Magnetic field produced at the centre of the orbit is

(a) 0.125 Wb/m^2 (b) 1.25 Wb/m^2

(c) 12.5 Wb/m^2 (d) 125 Wb/m^2

16. The dipole moment of a short bar magnet is 12.5 A-m². The magnetic field on its axis at a distance of the magnet is

(a) 1.0x10⁻⁴ N/A-m

(b) $4x10^{-2} \text{ N/A-m}$

(c) 2x10⁻⁶ N/A-m

(d) $6.64 \times 10^{-8} \text{ N/A-m}$

TIVI

17. The turnratio of a transformers is given as 2:3. If the current through the primary coil is 3 A, thus calculate the current through load resistance

(a) 1 A (b) 4.5 A (c) 2 A (d) 1.5 A

18. In an AC circuit, the potential across an inductance and resistance joined in series are respectively 16 V and 20 V. The total potential difference potential difference across the circuit is

(a) 20.0 V (b) 25.6 V

(c) 31.9 V (d) 33.6 V

19. If hydrogen atom is its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increased by

(a) $1.05 \times 10^{34} \text{ J/s}$

(b) $3.16x10^{-34} J/s$

(d) $2.11x10^{-34}$ J/s

(d) 4.22x10-34 J/s

20. Highly energetic electrons re bombarded on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that of Helium nucleus is $(14)^{1/3}$. The atomic number of nucleus will be

Download from www.JbigDeal.com Powered By © JbigDeal_

- (a) 25 (b) 26 (c) 56 (d) 30
- 21. Each resistance shown in figure is 2 Ω . Thhe equivalent resistance between A and B is

- (a) $2\,\Omega$ (b) $4\,\Omega$ (c) $8\,\Omega$ (d) $1\,\Omega$
- 22. If in triode value amplification factor is 20 and plate resistance is 10 k Ω , then its mutual conductance is
 - (a) 2 milli mho (b) 20 milli mho
 - (c) (1/2) milli mho (d) 200-mho
- 23. The output wave form of full wave rectifier is

24. Calculate the energy released when three α -particles combined to form a ^{12}C nucleus, the mass defeat is (Atomic mass of $_2\text{He}^4$ is 4.002603 u)

- (a) 0.007809 u (b) 0.002603
- (c) 4.002603 u (d) 0.5 u
- 25. In the figure shown, the magnetic field induction at the point O will be

- (a) $\frac{\mu_0 l}{2 \pi r}$ (b) $\left(\frac{\mu_0}{4\pi}\right) \left(\frac{l}{r}\right) (\pi + 2)$
- (c) $\left(\frac{\mu_0}{4z}\right)\left(\frac{t}{r}\right)(\pi+1)$ (d) $\frac{\mu_0 t}{2\pi r}$ (π -2)
- 26. In photoelectric emission process from a metal of work function 1.8 eV, the kinetic energy of most energetic electrons is 0.5 eV. The corresponding stopping potential is
 - (a) 1.3 V (b) 0.5 V (c) 2.3 V (d) 1.8 V
- 27. A current of 2 A flows a 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a 9Ω resistor. The internal resistance of the battery is
 - (a) $1/3 \Omega$ (b) $\frac{1}{4} \Omega$
 - (c) 1Ω (d) 0.5Ω
- 28. The current I in a coil varies with time as shown in figure. The variation of induced emf with time would be

- 29. A transistor is operated in common emitter configuration at V_c = 2 V such that a change in the base current from 100 μ A to 300 μ A produces a change in the collector current from 10 mA. The current gain is
 - (a) 75 (b) 100 (c) 25 (d) 50
- 30. A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected in the region such that its velocity is printed along the direction of fields, then the electron
 - (a) speed will decrease (b) speed will increase
 - (c) will turn towards left of direction of motion
 - (d) will turn towards right of direction a motion
- 31. Change q is uniformly spread on a thin ring of radius R. The ring rotates about its axis with a uniform frequency f Hz. The magnitude of magnetic induction at the centre of the ring is

(a)
$$\frac{-0^{qf}}{2R}$$
 (b) $\frac{\mu_0 q}{2fR}$

(c)
$$\frac{\mu_0 q}{2\pi f R}$$
 (d) $\frac{q}{2\pi R}$

32. A galvanometer of resistance, G is shunted by a resistance S ohm. To keep the main current in the circuit unchanged, the resistance to be put in series with galvanometer is

(a)
$$\frac{S^2}{(S+G)}$$
 (b) $\frac{SG}{(S+G)}$

(c)
$$\frac{G^2}{(S+G)}$$
 (d) $\frac{G}{(S+G)}$

33. Three charges, each +q, are placed at the corners of an isosceles triangle ABC of sides BC and AC, 2a. D and E are the mid-points of BC and CA. The work done in taking a charge Q from D to E is

34. A square loop, carrying a steady current I, is placed in horizontal plane near a long straight conductor carrying a steady current I₁ at a distance d from the conductor as shown in figure. The loop will experience

- (a) A net repulsive force away from the conductor
- (b) A net torque acting upward perpendicular to the horizontal plane
- (c) A net torque acting downward normal to the horizontal plane
- (d) A net attractive force towards the conductor

35. The threshold frequency for a photo-sensitive metal is 3.3×10^{14} Hz. If light of frequency 8.2×10^{14} Hz is incident on this metal, the cut off voltage for the photo-electric emission is nearly

36. For the given circuit of p-n junction diode, which of the following statement is correct

- (a) In forward biasing the voltage across R is V
- (b) In forward biasing the voltage across R is 2 V
- (c) In reverse biasing the voltage across R is V
- (d) In reverse biasing the voltage across R is 2 V

37. If the binding energy per nuclear in Li⁷ and He⁴ nuclei are respectively 5.60 MeV and 7.06 MeV, then energy of reactor

$$Li^7+P \rightarrow 2_2He^4$$
 is

- (a) 19.6 MeV
- (b) 2.4 MeV
- (c) 8.4 MeV
- (d) 17.3 MeV

38. The graph between the square root of the frequency of a specific line of characteristic spectrum of X-ray and the atomic number of the target will be

(b)

(c)

(d)

TIVI

39. A resistor R, an inductor L and capacitor C are connected in series to an osciller of frequency n. If the resonant frequency is n_r , then the current lags behind voltage, when

- (a) n=0
- (b) n<n_r
- (c) $n=n_r$
- (d) $n>n_r$

40. A parallel plate capacitor ha scapacitance C. If it is equally filled with parallel layers of materials of dielectric constant K_1 and K_2 its capacity becomes C_1 . The ratio of C_1 and C is

- (a) K₁+K₂
- (b) $\frac{K_1K_2}{K_1+K_2}$
- (c) $\frac{K_1 + K_2}{K_1 K_2}$
- (d) $\frac{2K_1K_2}{K_1+K_2}$