CBSE Board
Class X Summative Assessment - II
Mathematics
Board Question Paper 2014 - Set 2

Solution

Section A

1. Correct answer: C

The multiples of 4 between 1 and 15 are 4,8 and 12 . The probability of getting a multiple of $4=\frac{3}{15}=\frac{1}{5}$
2. Correct answer: A

Let $A B$ be the tower and $B C$ be distance between tower and car. Let θ be the angle of depression of the car.
According to the given information, In $\triangle A B C$,
$\tan \theta=\frac{\mathrm{BC}}{\mathrm{AB}} \quad\left[\right.$ Using (1)] and $\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
$\therefore B C=\frac{150}{\sqrt{3}}=\frac{150 \sqrt{3}}{3}=50 \sqrt{3}$
Hence, distance between the tower and car is $50 \sqrt{3}$.
3. Correct answer: D

$\mathrm{TA}=\mathrm{TP} \Rightarrow \angle \mathrm{TAP}=\angle \mathrm{TPA}$
$\mathrm{TB}=\mathrm{TP} \Rightarrow \angle \mathrm{TBP}=\angle \mathrm{TPB}$
$\therefore \angle \mathrm{TAP}+\angle \mathrm{TBP}=\angle \mathrm{TPA}+\angle \mathrm{TPB}=\angle \mathrm{APB}$
$\angle \mathrm{TAP}+\angle \mathrm{TBP}+\angle \mathrm{APB}=180^{\circ} \quad\left[\because\right.$ sum of..... $\left.180^{\circ}\right]$
$\therefore \angle \mathrm{APB}+\angle \mathrm{APB}=180^{\circ}$
$\therefore 2 \angle \mathrm{APB}=180^{\circ}$
$\therefore \angle \mathrm{APB}=90^{\circ}$
4. Correct answer: B
k, 2k-1, $2 k+1$ are in Arithmetic Progression if a_{1}, a_{2} and a_{3} are in A.P. then
$a_{2}-a_{1}=a_{3}-a_{2}$
$2 \mathrm{a}_{2}=\mathrm{a}_{3}+\mathrm{a}_{1}$
$2 \times(2 k-1)=(2 k+1)+k$
$4 \mathrm{k}-2=3 \mathrm{k}+1$
$\mathrm{k}=3$
5. Correct answer: B

Given $\angle \mathrm{AOB}$ is given as 90°
$\triangle A O B$ is an isosceles triangle since $O A=O B$
Therefore $\angle \mathrm{OAB}=\angle \mathrm{OBA}=45^{\circ}$
Thus $\angle A O P=45^{\circ}$ and $\angle B O P=45^{\circ}$
Hence $\triangle A O P$ and $\triangle B O P$ also are isosceles triangles
$\therefore A P=O P a n d O P=P B$
LetA $P=O P=P B=x$
In $\triangle \mathrm{AOP}$
$x^{2}+x^{2}=10^{2}$ [Pythagoras theorem]
Thus $2 x^{2}=100$
$x=5 \sqrt{2}$
Hence length of chord $A B=2 x=5 \sqrt{2}+5 \sqrt{2}=10 \sqrt{2}$
6. Correct answer: A

We see that $A B=4$ units and $B C=3$ units
Using Pythagoras theorem

$$
\begin{gathered}
A C^{2}=A B^{2}+B C^{2} \\
=4^{2}+3^{2} \\
A C^{2}=25
\end{gathered}
$$

Thus $A C=5$ units
Hence length of the diagonal of the rectangle is 5 units
7. Correct answer: C

It is given that $A B=5$ and $B C=12$
Using Pythagoras theorem

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2} \\
& =5^{2}+12^{2} \\
& =169
\end{aligned}
$$

Thus AC = 13
We know that two tangents drawn to a circle from the same point that is exterior to the circle are of equal lengths.

Thus $A M=A Q=a$
Similarly $\mathrm{MB}=\mathrm{BP}=\mathrm{b}$ and $\mathrm{PC}=\mathrm{CQ}=\mathrm{c}$
We know
$A B=a+b=5$
$B C=b+c=12$ and
$A C=a+c=13$
Solving simultaneously we get $a=3, b=2$ and $c=10$
We also know that the tangent is perpendicular to the radius
Thus OMBP is a square with side b
Hence the length of the radius of the circle inscribed in the right angled triangle is 2 cm .
8. Correct answer: A

There are in all $2^{3}=8$ combinations or outcomes for the gender of the 3 children
The eight combinations are as follows BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG
Thus the probability of having at least one boy in a family is $\frac{7}{8}$

SECTION B

9. Solution:

Given: $A B$ and $C D$ are common tangents to both the circles.
To prove: $A B=C D$
Proof:
We know that two tangents drawn to a circle for the same exterior point are equal.
Thus we get

$$
\begin{equation*}
\mathrm{AE}=\mathrm{EC} \tag{i}
\end{equation*}
$$

Similarly
$E D=E B \quad$ (ii)
$A B=A E+E B$ (iii)
and
$C D=C E+E D$ (iv)
$A B=E C+E B \quad$ from (i) and (iii)
$C D=E C+E B \quad$ from (ii) and (iv)
Therefore $A B=C D$
Hence proved.
10.

Given: $\triangle A B C$ is an isosceles triangle in which $A B=A C$; with a circle inscribed in the triangle.
To prove: BD = DC
Proof:
$A F$ and $A E$ are tangents drawn to the circle from point A.
Since two tangents drawn to a circle from the same exterior point are equal,
$A F=A E=a$
Similarly $\mathrm{BF}=\mathrm{BD}=\mathrm{b}$ and $\mathrm{CD}=\mathrm{CE}=\mathrm{c}$
We also know that $\triangle A B C$ is an isosceles triangle in which $A B=A C$.
$a+b=a+c$
Thus $b=c$
Therefore, BD = DC
Hence proved.
11. Solution:

The total number of outcomes when two dice are tossed together is 36 .
The sample space is as follows

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

i. Let E be the event 'that number of each die is even'

Favourable outcomes $=\{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2)$, $(6,4),(6,6)\}$
Probability that the number on each dice is even
$P(E)=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{9}{36}=\frac{1}{4}$
ii. Let F be the event
iii. Favourable outcomes $=\{(1,4)(2,3)(3,2)(4,1)\}$

Probability that the sum of the numbers appearing on the two dice is 5
$=\frac{\text { Number of favourable outcomes }}{\text { Total number of outcomes }}=\frac{4}{36}=\frac{1}{9}$
12. Solution:

Given total surface area of hemisphere $=462 \mathrm{~cm}^{2}$
$2 \pi r^{2}=462$
$\mathrm{r}=8.574 \mathrm{~cm}$
Volume of a hemisphere $=\frac{2}{3} \pi r^{3}$
$\therefore \quad \frac{2}{3} \pi r^{3}=\frac{2}{3} \times \frac{22}{7} \times 8.574^{3}=1320.54$
$\Rightarrow \quad r^{3}=\frac{4851}{2} \times \frac{3}{2} \times \frac{7}{22}=\left(\frac{21}{2}\right)^{3}$
13. Solution:

Numbers which are divisible by both 2 and 5 are the numbers which are divisible by 10.
Thus we need to find the number of natural numbers between 101 and 999 which are divisible by 10.
The first number between 101 and 999 which is divisible by 10 is 110
And the last number between 101 and 999 which is divisible by 10 is 990 Using the formula for arithmetic progression where first term $(a)=110$, last term $\left(T_{n}\right)=990$ and difference (d) $=10$
$T_{n}=a+(n-1) d$
$990=110+(n-1) 10$
$880=(n-1) 10$
$88=n-1$
$n=89$
Hence there are 89 natural numbers between 101 and 999 which are divisible by both 2 and 5.
14. Solution:

Given: Quadratic equation $9 x^{2}-3 k x+k=0$ has equal roots
Let β be the equal roots of the equation
Thus $2 \beta=\frac{3 k}{9}=\frac{k}{3}$ (Sum of the roots is equal to $-\mathrm{b} / \mathrm{a}$)
We get $\beta=\frac{k}{6}$
Or $\beta^{2}=\frac{k^{2}}{36}$
Also, that $\beta^{2}=\frac{k}{9}$ (Product of the roots is equal to c / a)
$\frac{k^{2}}{36}=\frac{k}{9}$
For $\mathrm{k} \neq 0, \frac{k}{36}=\frac{1}{9}$
Thus $\mathrm{k}=4$

SECTION - C

15. Solution:

Let P and Q be the two positions of the plane and A be the point of observation. Let ABC be the horizontal line through A.
It is given that angles of elevation of the plane in two positions P and Q from a point A are 60° and 30° respectively.
$\therefore \angle P A B=60^{\circ}, \angle Q A B=30^{\circ}$. It is also given that $\mathrm{PB}=3000 \sqrt{3}$ meters
In $\triangle A B P$, we have
$\tan 60=\frac{\mathrm{BP}}{\mathrm{AB}}$
$\frac{\sqrt{3}}{1}=\frac{3000 \sqrt{3}}{A B}$
$A B=3000 \mathrm{~m}$
In $\triangle A C Q$, we have
$\tan 30=\frac{\mathrm{QC}}{\mathrm{AC}}$
$\frac{1}{\sqrt{3}}=\frac{3000 \sqrt{3}}{A C}$
$A C=9000 \mathrm{~m}$
\therefore Distance $=B C=A C-A B=9000 \mathrm{~m}-3000 \mathrm{~m}=6000 \mathrm{~m}$
Thus, the plane travels 6 km in 30 seconds
Hence speed of plane $=6000 / 30=200 \mathrm{~m} / \mathrm{sec}=720 \mathrm{~km} / \mathrm{h}$
16. Solution:

Diameter of sphere curved out $=$ side of cube $=7 \mathrm{~cm}$ or Radius $=3.5 \mathrm{~cm}$
Volume of cube $=a^{3}$
$=7^{3}$
$=343 \mathrm{~cm}^{3}$
Volume of sphere curved out $=4 / 3 \pi r^{3}$
$=4 / 3 \times 22 / 7 \times 7 / 2 \times 7 / 2 \times 7 / 2=179.66 \mathrm{~cm}^{3}$
17. Solution:

Given:-
Speed of flowing water $=4 \mathrm{~km} / \mathrm{h}=200 / 3$ metres per minute
Width of canal $=6 \mathrm{~m}$ and height of canal $=1.5 \mathrm{~m}$
Standing water requirement for irrigation $=8 \mathrm{~cm}=0.08 \mathrm{~m}$

Cross section area of canal $=$ width of canal $*$ height of canal

$$
=(6 * 1.5) \mathrm{m}^{2}
$$

Volume of water needed to irrigate in $10 \mathrm{~min}=10 \times 6 \times 1.5 \times 200 / 3=$ $6000 \mathrm{~m}^{3}$
Volume of water irrigated $=$ base area (of irrigated land) \times height

$$
=\text { base area } \times 0.08 \mathrm{~m}
$$

$6000=$ base area $\times 0.08$
Base area $=6000 / 0.08=75000 \mathrm{~m}^{2}$
$=7.5$ hectare
[1 hectare $\left.=10000 \mathrm{~m}^{2}\right]$

$$
\begin{aligned}
\therefore \quad \text { Sum } & =\frac{\mathrm{n}}{2}\{\text { first term }+ \text { last term }\} \\
& =\frac{128}{2}\left\{\mathrm{a}_{1}+\mathrm{a}_{128}\right\} \\
& =64\{105+994\}=(64)(1099)=70336
\end{aligned}
$$

18. Solution:

Given :-
$A D=10 \mathrm{~cm}$
$B C=4 \mathrm{~cm}$
Area of trapezium $=24.5 \mathrm{~cm}^{2}$

Area of trapezium $=\frac{a+b}{2}$ height
[where ' a ' and ' b ' are parallel sides]
24.5

$$
=\frac{\mathrm{AD}+\mathrm{BC}}{2} \mathrm{AB}
$$

$$
=\frac{10+4}{2} \mathrm{AB}
$$

$\frac{24.5}{7}$

$$
=\mathrm{AB}
$$

$A B=3.5 \mathrm{~cm}$
Thus, radius $=3.5 \mathrm{~cm}$
Area of quadrant $=$ Area of a circle $/ 4$
Area of quadrant $=1 / 4 *$ pi $* r^{2}=0.25 \times 22 / 7 \times 3.5 \times 3.5=9.625 \mathrm{~cm}^{2}$
The area of shaded region $=$ Area of trapezium - Area of the given quadrant The area of shaded region $=24.5-9.625=14.875 \mathrm{~cm}^{2}$
19. Solution:

Point p lies on x axis so it's ordinate is 0 (Using section formula)

Let the ratio be k : 1 Let the coordinate of the point be $P(x, 0)$
As given $A(3,-3)$ and $B(-2,7)$
The co-ordinates of the point $P(x, y)$, which divide the line segment joining the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, internally in the ratio $m_{1}: m_{2}$ are
$\left(\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}+\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\right)$
$P_{y}=\frac{m y_{2}+n y_{1}}{m+n}$
Hence, $A(3,-3)$ be the co-ordinates $\left(x_{1}, y_{1}\right)$ and
$B(-2,7)$ be the co-ordinates $\left(x_{2}, y_{2}\right)$
$\mathrm{m}=\mathrm{k}$
$\mathrm{n}=1$

$$
\begin{aligned}
& 0=\mathrm{k} \times 7+1 \mathrm{x}-3 /(\mathrm{k}+1) \\
& 0(\mathrm{k}+1)=7 \mathrm{k}-3 \\
& 0=7 \mathrm{k}-3 \\
& 3=7 \mathrm{k} \\
& \mathrm{k}=3 / 7 \\
& \mathrm{k}: 1=3: 7 \\
& \mathrm{P}_{\mathrm{x}}=\frac{\mathrm{mx}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}
\end{aligned}
$$

$$
P x=\frac{\left[\left(\frac{3}{7} \times-2\right)+(1 \times 3)\right]}{\left(\frac{3}{7}+1\right)}=2.41
$$

20. Solution:

Given :
Radii of inner circle $=21 \mathrm{~cm}=\mathrm{r}$
Radii of outer circle $=42 \mathrm{~cm}=\mathrm{R}$
$\angle \mathrm{AOB}=\theta=60^{\circ}$
Also,
Area of ring $=\mathrm{pi}\left(R^{2}-r^{2}\right)$
Area of a sector $=\frac{\theta}{360} * \pi r^{2}$

The area of shaded region $=$ Area of ring - Area of ABCD

$$
=\text { Area of ring - Area of sector of Outer Circle - Area of }
$$

$$
\begin{aligned}
& \text { sector of Inner Circle } \\
= & \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)-\frac{\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)}{1} \times \frac{\theta}{360} \\
= & \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)-\frac{\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)}{1} \times \frac{\theta}{360} \\
= & \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)\left[1-\frac{\theta}{360}\right] \\
= & \frac{22}{7}\left(42^{2}-21^{2}\right)\left[1-\frac{60}{360}\right] \\
= & 3465 \mathrm{~cm}^{2}
\end{aligned}
$$

21. Solution:

$$
\begin{aligned}
& \text { Given: } \begin{array}{l}
\frac{16}{\mathrm{x}}-1=\frac{15}{\mathrm{x}+1} ; \mathrm{x} \# 0,-1 \\
\therefore \frac{16-\mathrm{x}}{\mathrm{x}}=\frac{15}{\mathrm{x}+1} \\
\frac{16-\mathrm{x}}{\mathrm{x}}=\frac{15}{\mathrm{x}+1} \\
\\
\frac{(16-\mathrm{x})(\mathrm{x}+1)}{1}=\frac{15 \mathrm{x}}{1} \\
16 \mathrm{x}+16-\mathrm{x}^{2}-\mathrm{x}=15 \mathrm{x} \\
16=\mathrm{x}^{2} \\
\mathrm{x}=4
\end{array}
\end{aligned}
$$

22. Solution:

The sum of $2^{\text {nd }}$ and the $7^{\text {th }}$ terms of an AP is 30

$$
(a+d)+(a+6 d)=30
$$

$$
\begin{equation*}
2 a+7 d=30 \tag{i}
\end{equation*}
$$

Now,
$15^{\text {th }}$ term is 1 less than twice the $8^{\text {th }}$ term
$(a+14 d)=2(a+7 d)-1$
$a+14 d=2 a+14 d-1$
$a=1$
Substituting the values in (i)
$2 \times 1+7 d=30$
$\mathrm{d}=4$
Hence, the terms in AP are a, a+d, a+2d, a+3d....
AP : 1,5,9
23. Solution:

24. Solution:

$\triangle \mathrm{ADC}$ and $\triangle \mathrm{BDC}$ are right angled triangles with AD and BC as hypotaneus
$A C^{2}=A B^{2}+D C^{2}$
$A C^{2}=(5-2)^{2}+(6+1)^{2}=9+49=58$ sq. unit
$B D^{2}=D^{2}+C B^{2}$
$B D^{2}=(5-2)^{2}+(-1-6)^{2}=9+49=58$ sq. unit
Hence, both the diagonals are equal in length.

SECTION D

25. Solution:

Given: A circle $C(0, r)$ and a tangent I at point A.
To prove: OA \perp I

Construction: Take a point B, other than A, on the tangent I. Join OB. Suppose OB meets the circle in C.
Proof: We know that, among all line segments joining the point O to a point on I, the perpendicular is shortest to I.
$O A=O C$ (Radius of the same circle)
But, $O B=O C+B C$.
$\therefore \mathrm{OB}>\mathrm{OC}$
$\Rightarrow \mathrm{OB}>\mathrm{OA}$
$\Rightarrow \mathrm{OA}<\mathrm{OB}$
This is true for all positions of B on I.
Thus, $O A$ is the shortest distance between point A and line segment I.
Hence, OA \perp I
26. Solution:

Given:-
Diameter of cylindrical vessel $=7 \mathrm{~cm}$
Diameter of spherical marbles $=1.4 \mathrm{~cm}$
Volume of a sphere =
Volume of 150 spherical marbles, each of diameters $1.4 \mathrm{~cm}=$ volume of cylindrical vessel of diameter 7 cm displaced

Volume of a Sphere $=\frac{4}{3} \pi r^{3}$
$150 \times \frac{4}{3} \pi\left(\frac{1.4}{2}\right)^{3}=\pi\left(\frac{7}{2}\right)^{2} \times \mathrm{h}$
$\mathrm{h}=5.6 \mathrm{~cm}$
27. Solution:

Volume of a frustum of a cone $=\frac{1}{3} \pi h\left(r 1^{2}+r 2^{2}+r 1 \times r 2\right)$
Volume of container $=1 / 3 \mathrm{pi}^{*} \mathrm{~h}\left(\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right)$

$$
\begin{aligned}
& =1 / 3 \times 22 / 7 \times 24[20 \times 20+8 \times 8+20 \times 8] \\
& =15689.14 \mathrm{~cm}^{3} \\
& =15.69 \text { litre }
\end{aligned}
$$

The cost of milk which can completely fill the container at the rate of Rs. 21 per liter $=\operatorname{Rs}(21 \times 15.69)=329.49$
28. Solution:

Let $A B$ is the tower of height h meter and $A C$ is flagstaff of height x meter.

$\angle \mathrm{APB}=45^{\circ}$ and $\angle \mathrm{BPC}=60^{\circ}$
Tan $60=(x+h) / 120)$
$\sqrt{3}=\frac{\mathrm{x}+\mathrm{h}}{120}$
$\mathrm{x}=120 \sqrt{3}-\mathrm{h}$
Tan $45=\mathrm{h} / 120$
$1=\mathrm{h} / 120$
$h=120$
Therefore height of the flagstaff $=$

$$
\begin{aligned}
& =120 \sqrt{3}-120 \\
& =120(\sqrt{3}-1) \\
& =120^{*} .73 \\
& =87.6 \mathrm{~m}
\end{aligned}
$$

29. Solution:

Let speed of stream $=x \mathrm{~km} / \mathrm{h}$
Speed f boat in steel water $=18 \mathrm{~km} / \mathrm{h}$

CBSE X | MATHEMATICS

Board Paper - 2014

Speed f boat in upstream $=(18-x) \mathrm{km} / \mathrm{h}$
Speed f boat in downstream $=(18+x) \mathrm{km} / \mathrm{h}$
Distance $=24 \mathrm{~km}$
As per question, it takes 1 hour more to go upstream 24 km , than downstream
$24 \mathrm{~km} /(18-x)=24 \mathrm{~km} /(18+x)+1$
$x^{2}+48 x-324=0$
$x=6$ or $x=-54$
But, as speed can not be negative
Hence, the speed of stream $=6 \mathrm{~km} / \mathrm{h}$
30. Solution:

Class 1 plant trees $=2 \times$ class 1×2 section $=2 \times 1 \times 2=4 \times$ classs $=4 \times 1=4$ trees
Class 2 plant trees $=4 \times$ classs $=4 \times 2=8$ trees
$\mathrm{a}=4$
$\mathrm{d}=8$
$\mathrm{n}=12$
S12 $=12 / 2[2 \times 4+11 \times 4]=312$ trees
31. Solution:
$\frac{x-3}{x-4}+\frac{x-5}{x-6}=\frac{10}{3}$
$\frac{[(x-3)(x-6)+(x-4)(x-5)]}{(x-4)(x-6)}=\frac{10}{3}$
$\frac{x^{2}-9 x+18+x^{2}-9 x+20}{(x-4)(x-6)}=\frac{10}{3}$
$\frac{2 x^{2}-18 x+38}{(x-4)(x-6)}=\frac{10}{3}$
$\frac{2\left(x^{2}-9 x+19\right)}{1}=\frac{10}{3}\left(x^{2}-10 x+24\right)$
$\frac{x-9 x+19}{1}=\frac{5}{3}\left[x^{2}-10 x+24\right]$
$3 x^{2}-27 x+57=5 x^{2}-50 x+120$
$2 x^{2}-23 x+63=0$
$\therefore x=7$ or $x=\frac{9}{2}$
32. Solution:
(i) face card are removed from a pack of 52 playing card $=6$

Total favorable outcomes $=52-6=46$
Number of red color cards in the remaining pack $=26-6=20$
$P[E]=20 / 46=10 / 23$
(ii) Number of queen cards in the remaining pack $=2$
$P[E]=2 / 46=1 / 23$
(iii) Number of aces in the remaining pack $=2$
$P[E]=2 / 46=1 / 23$
(iv) Number of face cards in the remaining pack $=6$
$P[E]=6 / 46=3 / 23$
33. Solution:

Let the co-ordinates of D be $D(x, y)$ and D is midpoint of $B C$
$x=(3+5) / 2=4 ; y=(2-2) / 2=0$

Now Area of triangle $A B D=1 / 2[4(-2-0)+3(0+6)+4(-6+2)]=3$ sq unit and Area of triangle $A C D=1 / 2[5(-6-0)+4(0-2)+4(2+6)]=3$ sq unit Hence, the median AD divides triangle $A B C$ into two triangle of equal area.
34. Solution:

Let $A B C D$ be a quadrilateral circumscribing a circle centered at O such that it touches the circle at point P, Q, R, S. Let us join the vertices of the quadrilateral ABCD to the center of the circle. Consider \triangle OAP and \triangle OAS, AP $=A S$ (Tangents from the same point)

```
\(\mathrm{OP}=\mathrm{OS}\) (Radii of the same circle)
\(O A=O A\) (Common side)
Thus, by Side-Side-Side criterion of congruence, we have
\(\triangle \mathrm{OAP} \cong \triangle \mathrm{OAS}\) (SSS congruence criterion)
Therefore, \(A \leftrightarrow A, P \leftrightarrow S, O \leftrightarrow O\)
The corresponding parts of the congruent triangles are congruent.
And thus, \(\angle P O A=\angle A O S\)
\(\angle 1=\angle 8\)
Similarly,
\(\angle 2=\angle 3\)
\(\angle 4=\angle 5\)
\(\angle 6=\angle 7\)
\(\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}\)
\((\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}\)
\(2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}\)
\(2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}\)
\((\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}\)
\(\angle A O B+\angle C O D=180^{\circ}\)
Similarly, we can prove that \(\angle B O C+\angle D O A=180^{\circ}\)
Hence, opposite sides of a quadrilateral circumscribing a circle subtend
supplementary angles at the centre of the circle.
```

