CBSE Board

Class X Mathematics

Board Paper - 2013

Time: 3 hour Total Marks: 90

Solution
 Section A

1. Correct answer: C

Let $A B$ be the tower of height 75 m and C be the position of the car.
In $\triangle A B C$,
$\cot 30^{\circ}=\frac{A C}{A B}$
$\Rightarrow A C=A B \cot 30^{\circ}$
$\Rightarrow A C=75 \mathrm{~m} \times \sqrt{3}$
$\Rightarrow A C=75 \sqrt{3} \mathrm{~m}$
Thus, the distance of the car from the base of the tower is $75 \sqrt{3} \mathrm{~m}$.
2. Correct answer: A
$S=\{1,2,3,4,5,6\}$
Let event E be defined as 'getting an even number'.
$n(E)=\{1,4,6\}$
\therefore PE $=\frac{\text { Number of favourable outcomes }}{\text { Number of possible outcomes }}=\frac{3}{6}=\frac{1}{2}$
3. Correct answer: C
$S=\{1,2,3, . .90\}$
$\mathrm{n}(\mathrm{S})=90$
The prime number less than 23 are 2, 3,5,7,11,13,17, and 19.
Let event E be defined as 'getting a prime number less than 23 '.
$n(E)=8$
\therefore PE $=\frac{\text { Number of favourable outcomes }}{\text { Number of possible outcomes }}=\frac{8}{90}=\frac{4}{45}$
4. Correct answer: A

Given: $A B, B C, C D$ and $A D$ are tangents to the circle with centre O at Q, P, S and R respectively.

$$
A B=29 \mathrm{~cm}, A D=23, D S=5 \mathrm{~cm} \text { and } \angle B=90^{\circ}
$$

Construction: Join PQ.

We know that, the lengths of the tangents drawn from an external point to a circle are equal.

$$
\begin{aligned}
& D S=D R=5 \mathrm{~cm} \\
& \therefore A R=A D-D R=23 \mathrm{~cm}-5 \mathrm{~cm}=18 \mathrm{~cm} \\
& A Q=A R=18 \mathrm{~cm} \\
& \therefore Q B=A B-A Q=29 \mathrm{~cm}-18 \mathrm{~cm}=11 \mathrm{~cm} \\
& Q B=B P=11 \mathrm{~cm}
\end{aligned}
$$

In $\triangle \mathrm{PQB}$,
$P Q^{2}=Q^{2}+\mathrm{BP}^{2}=(11 \mathrm{~cm})^{2}+(11 \mathrm{~cm})^{2}=2 \times(11 \mathrm{~cm})^{2}$
$P Q=11 \sqrt{2} \mathrm{~cm}$
In $\Delta \mathrm{OPQ}$,
$P Q^{2}=O Q^{2}+O P^{2}=r^{2}+r^{2}=2 r^{2}$
$(11 \sqrt{2})^{2}=2 r^{2}$
$121=r^{2}$
$r=11$
Thus, the radius of the circle is 11 cm .
5. Correct answer: B
$A P \perp P B$
(Given)
$\mathrm{CA} \perp \mathrm{AP}, \mathrm{CB} \perp \mathrm{BP}$ (Since radius is perpendicular to tangent)
$A C=C B=$ radius of the circle
Therefore, APBC is a square having side equal to 4 cm .
Therefore, length of each tangent is 4 cm .
6. Correct answer: C

From the figure, the coordinates of A, B, and C are $(1,3),(-1,0)$ and $(4,0)$
respectively.

Area of $\triangle A B C$
$=\frac{1}{2}|1(0-0)+(-1)(0-3)+4(3-0)|$
$=\frac{1}{2}|0+3+12|$
$=\frac{1}{2}|15|$
$=7.5$ sq units
7. Correct answer: B

Let r be the radius of the circle.
From the given information, we have:
$2 \pi r-r=37 c m$
$\Rightarrow \mathrm{r} 2 \pi-1=37 \mathrm{~cm}$
$\Rightarrow r\left(2 \times \frac{22}{7}-1\right)=37 \mathrm{~cm}$
$\Rightarrow \mathrm{r} \times \frac{37}{7}=37 \mathrm{~cm}$
$\Rightarrow \mathrm{r}=7 \mathrm{~cm}$
\therefore Circumference of the circle $=2 \pi r=2 \times \frac{22}{7} \times 7 \mathrm{~cm}=44 \mathrm{~cm}$
8. Correct answer: C

Common difference $=$

$$
\frac{1-6 q}{3 q}-\frac{1}{3 q}=\frac{1-6 q-1}{3 q}=\frac{-6 q}{3 q}=-2
$$

9. Given: $A B C D$ be a parallelogram circumscribing a circle with centre O.

To prove: $A B C D$ is a rhombus.

We know that the tangents drawn to a circle from an exterior point are equal in length.

Therefore, $A P=A S, B P=B Q, C R=C Q$ and $D R=D S$.
Adding the above equations,
$A P+B P+C R+D R=A S+B Q+C Q+D S$
$(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)$
$A B+C D=A D+B C$
$2 A B=2 B C$
(Since, $A B C D$ is a parallelogram so $A B=D C$ and $A D=B C$)
$A B=B C$
Therefore, $A B=B C=D C=A D$.
Hence, $A B C D$ is a rhombus.
10. Dimension of the rectangular card board $=14 \mathrm{~cm} \times 7 \mathrm{~cm}$

Since, two circular pieces of equal radii and maximum area touching each other are cut from the rectangular card board, therefore, the diameter of each of each circular piece is $\frac{14}{2}=7 \mathrm{~cm}$.

14 cm
Radius of each circular piece $=\frac{7}{2} \mathrm{~cm}$.
\therefore Sum of area of two circular pieces $=2 \times \pi\left(\frac{7}{2}\right)^{2}=2 \times \frac{22}{7} \times \frac{49}{4}=77 \mathrm{~cm}^{2}$
Area of the remaining card board
$=$ Area of the card board - Area of two circular pieces
$=14 \mathrm{~cm} \times 7 \mathrm{~cm}-77 \mathrm{~cm}^{2}$
$=98 \mathrm{~cm}^{2}-77 \mathrm{~cm}^{2}$
$=21 \mathrm{~cm}^{2}$
11. Given: $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$.

Let, $A D=A F=x \mathrm{~cm}, B D=B E=y \mathrm{~cm}$ and $C E=C F=z \mathrm{~cm}$
(Tangents drawn from an external point to the circle are equal in length)
$\Rightarrow 2(x+y+z)=A B+B C+A C=A D+D B+B E+E C+A F+F C=30 c m$
$\Rightarrow x+y+z=15 \mathrm{~cm}$
$A B=A D+D B=x+y=12 c m$
$\therefore z=C F=15-12=3 \mathrm{~cm}$

$$
\begin{aligned}
& A C=A F+F C=x+z=10 \mathrm{~cm} \\
& \therefore y=B E=15-10=5 \mathrm{~cm} \\
& \therefore x=A D=x+y+z-z-y=15-3-5=7 \mathrm{~cm}
\end{aligned}
$$

12. Three digit numbers divisible by 7 are
$105,112,119, \ldots 994$
This is an AP with first term (a) = 105 and common difference (d) $=7$
Let a_{n} be the last term.
$a_{n}=a+(n-1) d$
$994=105+(n-1)(7)$
$7(n-1)=889$
$\mathrm{n}-1=127$
$\mathrm{n}=128$
Thus, there are 128 three-digit natural numbers that are divisible by 7 .
13.

$4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=0$
$\Rightarrow 4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3}=0$
$\Rightarrow 4 x \sqrt{3} x+2-\sqrt{3} \sqrt{3} x+2=0$
$\Rightarrow 4 x-\sqrt{3} \quad \sqrt{3} x+2=0$
$\therefore x=\frac{\sqrt{3}}{4}$ or $x=-\frac{2}{\sqrt{3}}$
14. Let E be the event that the drawn card is neither a king nor a queen.

Total number of possible outcomes $=52$
Total number of kings and queens $=4+4=8$
Therefore, there are 52-8 = 44 cards that are neither king nor queen.
Total number of favourable outcomes $=44$
\therefore Required probability $=P(E)=\frac{\text { Favourable outcomes }}{\text { Total number of outcomes }}=\frac{44}{52}=\frac{11}{13}$
15.

Let the radius and height of cylinder be r cm and hcm respectively.
Diameter of the hemispherical bowl $=14 \mathrm{~cm}$
\therefore Radius of the hemispherical bowl $=$ Radius of the cylinder
$=\mathrm{r}=\frac{14}{2} \mathrm{~cm}=7 \mathrm{~cm}$
Total height of the vessel $=13 \mathrm{~cm}$
\therefore Height of the cylinder, $\mathrm{h}=13 \mathrm{~cm}-7 \mathrm{~cm}=6 \mathrm{~cm}$
Total surface area of the vessel $=2$ (curved surface area of the cylinder + curved surface area of the hemisphere)
(Since, the vessel is hollow)
$=22 \pi r h+2 \pi r^{2}=4 \pi r h+r=4 \times \frac{22}{7} \times 7 \times 6+7 \mathrm{~cm}^{2}$
$=1144 \mathrm{~cm}^{2}$
16.

Height of the cylinder, $h=10 \mathrm{~cm}$
Radius of the cylinder $=$ Radius of each hemisphere $=r=3.5 \mathrm{~cm}$
Volume of wood in the toy $=$ Volume of the cylinder $-2 \times$ Volume of each hemisphere
$=\pi r^{2} h-2 \times \frac{2}{3} \pi r^{3}$
$=\pi r^{2}\left(h-\frac{4}{3} r\right)$
$=\frac{22}{7} \times(3.5)^{2}\left(10-\frac{4}{3} \times 3.5\right)$
$=38.5 \times 10-4.67$
$=38.5 \times 5.33$
$=205.205 \mathrm{~cm}^{3}$
Radius $=21 \mathrm{~cm}$
17. The arc subtends an angle of 60° at the centre.
(i) $I=\frac{\theta}{360^{\circ}} \times 2 \pi r$

$$
\begin{aligned}
& =\frac{60^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 21 \mathrm{~cm} \\
& =22 \mathrm{~cm}
\end{aligned}
$$

(ii) Area of the sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21 \times 21 \mathrm{~cm}^{2} \\
& =231 \mathrm{~cm}^{2}
\end{aligned}
$$

18. $A B$ and $C D$ are the diameters of a circle with centre O.
$\therefore \mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=7 \mathrm{~cm}$ (Radius of the circle)
Area of the shaded region
$=$ Area of the circle with diameter $O B+$ (Area of the semi-circle ACDA - Area of $\Delta \mathrm{ACD}$)

$$
\begin{aligned}
& =\pi\left(\frac{7}{2}\right)^{2}+\left(\frac{1}{2} \times \pi \times 7^{2}-\frac{1}{2} \times \mathrm{CD} \times \mathrm{OA}\right) \\
& =\frac{22}{7} \times \frac{49}{4}+\frac{1}{2} \times \frac{22}{7} \times 49-\frac{1}{2} \times 14 \times 7 \\
& =\frac{77}{2}+77-49 \\
& =66.5 \mathrm{~cm}^{2}
\end{aligned}
$$

19. Let the y-axis divide the line segment joining the points $(-4,-6)$ and $(10,12)$ in the ratio $k: 1$ and the point of the intersection be $(0, y)$.

Using section formula, we have:
$\left(\frac{10 \mathrm{k}+-4}{\mathrm{k}+1}, \frac{12 \mathrm{k}+-6}{\mathrm{k}+1}\right)=0, \mathrm{y}$
$\therefore \frac{10 \mathrm{k}-4}{\mathrm{k}+1}=0 \Rightarrow 10 \mathrm{k}-4=0$
$\Rightarrow k=\frac{4}{10}=\frac{2}{5}$
Thus, the y-axis divides the
line segment joining the given points in the ratio 2:5
$\therefore y=\frac{12 k+-6}{k+1}=\frac{12 \times \frac{2}{5}-6}{\frac{2}{5}+1}=\frac{\left(\frac{24-30}{5}\right)}{\left(\frac{2+5}{5}\right)}=-\frac{6}{7}$
Thus, the coordinates of the point of division are $\left(0,-\frac{6}{7}\right)$.
20.

Let $A B$ and $C D$ be the two poles, where $C D$ (the second pole) $=24 \mathrm{~m}$.
$B D=15 \mathrm{~m}$
Let the height of pole $A B$ be h m.
$A L=B D=15 \mathrm{~m}$ and $A B=L D=h$
So, CL = CD - LD = $24-\mathrm{h}$

$$
\begin{aligned}
& \text { In } \triangle \mathrm{ACL}, \\
& \tan 30^{\circ}=\frac{\mathrm{CL}}{\mathrm{AL}} \\
& \Rightarrow \tan 30^{\circ}=\frac{24-\mathrm{h}}{15} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{24-\mathrm{h}}{15} \\
& \Rightarrow 24-\mathrm{h}=\frac{15}{\sqrt{3}}=5 \sqrt{3} \\
& \Rightarrow \mathrm{~h}=24-5 \sqrt{3} \\
& \Rightarrow \mathrm{~h}=24-5 \times 1.732 \quad \text { [Taking } \sqrt{3}=1.732] \\
& \Rightarrow \mathrm{h}=15.34
\end{aligned}
$$

Thus, height of the first pole is 15.34 m .
21. $k+4) x^{2}+(k+1) x+1=0$
$a=k+4, b=k+1, c=1$
For equal roots, dicriminant, $D=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{b}^{2}-4 \mathrm{ac}=0 \\
& \Rightarrow(\mathrm{k}+1)^{2}-4(\mathrm{k}+4) \times 1=0 \\
& \Rightarrow \mathrm{k}^{2}+2 \mathrm{k}+1-4 \mathrm{k}-16=0 \\
& \Rightarrow \mathrm{k}^{2}-2 \mathrm{k}-15=0 \\
& \Rightarrow \mathrm{k}^{2}-5 \mathrm{k}+3 \mathrm{k}-15=0 \\
& \Rightarrow \mathrm{k}(\mathrm{k}-5)+3(\mathrm{k}-5)=0 \\
& \Rightarrow(\mathrm{k}-5)(\mathrm{k}+3)=0 \\
& \Rightarrow \mathrm{k}=5 \text { or } \mathrm{k}=-3
\end{aligned}
$$

Thus, for $k=5$ or $k=-3$, the given quadratic equation has equal roots.
22. $S_{n}=3 n^{2}+4 n$

First term $\left(a_{1}\right)=S_{1}=3(1)^{2}+4(1)=7$
$S_{2}=a_{1}+a_{2}=3(2)^{2}+4(2)=20$
$\mathrm{a}_{2}=20-\mathrm{a}_{1}=20-7=13$
So, common difference (d) $=a_{2}-a_{1}=13-7=6$
Now, $a_{n}=a+(n-1) d$

$$
\therefore a_{25}=7+(25-1) \times 6=7+24 \times 6=7+144=151
$$

23.

Steps of construction:

1. Draw two concentric circle with centre O and radii 4 cm and 6 cm . Take a point P on the outer circle and then join OP.
2. Draw the perpendicular bisector of OP. Let the bisector intersects OP at M.
3. With M as the centre and $O M$ as the radius, draw a circle. Let it intersect the inner circle at A and B.
4. Join PA and PB.

Therefore, $\overline{\mathrm{PA}}$ and $\overline{\mathrm{PB}}$ are the required tangents.
24. The given points are $A(-2,3) B(8,3)$ and $C(6,7)$.

Using distance formula, we have:

$$
\begin{aligned}
& A B^{2}=8--^{2}+3-3^{2} \\
& \Rightarrow A B^{2}=10^{2}+0 \\
& \Rightarrow A B^{2}=100 \\
& B C^{2}=6-8^{2}+7-3^{2} \\
& \Rightarrow B C^{2}=(-2)^{2}+4^{2}
\end{aligned}
$$

$\Rightarrow B C^{2}=4+16$
$\Rightarrow B C^{2}=20$
$C A^{2}=-2-6^{2}+3-7^{2}$
$\Rightarrow C A=(-8)^{2}+(-4)^{2}$
$\Rightarrow C A^{2}=64+16$
$\Rightarrow C A^{2}=80$
It can be observed that:
$B C^{2}+C A^{2}=20+80=100=A B^{2}$
So, by the converse of Pythagoras Theorem,
$\triangle A B C$ is a right triangle right angled at C.
25. Diameter of circular end of pipe $=2 \mathrm{~cm}$
\therefore Radius r_{1} of circular end of pipe $=\frac{2}{200} \mathrm{~m}=0.01 \mathrm{~m}$
Area of cross-section $=\pi \times \mathrm{r}_{1}^{2}=\pi \times 0.01^{2}=0.0001 \pi \mathrm{~m}^{2}$
Speed of water $=0.4 \mathrm{~m} / \mathrm{s}=0.4 \times 60=24$ metre $/ \mathrm{min}$
Volume of water that flows in 1 minute from pipe $=$ $24 \times 0.0001 \pi \mathrm{~m}^{3}=0.0024 \pi \mathrm{~m}^{3}$

Volume of water that flows in 30 minutes from pipe $=$

$$
30 \times 0.0024 \pi \mathrm{~m}^{3}=0.072 \pi \mathrm{~m}^{3}
$$

Radius $\left(r_{2}\right)$ of base of cylindrical tank $=40 \mathrm{~cm}=0.4 \mathrm{~m}$
Let the cylindrical tank be filled up to h m in 30 minutes.
Volume of water filled in tank in 30 minutes is equal to the volume of water flowed out in 30 minutes from the pipe.

$$
\begin{aligned}
& \therefore \pi \times \mathrm{r}_{2}^{2} \times \mathrm{h}=0.072 \pi \\
& \Rightarrow 0.4^{2} \times \mathrm{h}=0.072 \\
& \Rightarrow 0.16 \mathrm{~h}=0.072 \\
& \Rightarrow \mathrm{~h}=\frac{0.072}{0.16} \\
& \Rightarrow \mathrm{~h}=0.45 \mathrm{~m}=45 \mathrm{~cm}
\end{aligned}
$$

Therefore, the rise in level of water in the tank in half an hour is 45 cm .
26. The group consists of 12 persons.
\therefore Total number of possible outcomes $=12$
Let A denote event of selecting persons who are extremely patient
\therefore Number of outcomes favourable to A is 3 .
Let B denote event of selecting persons who are extremely kind or honest.
Number of persons who are extremely honest is 6 .
Number of persons who are extremely kind is $12-(6+3)=3$
\therefore Number of outcomes favourable to $B=6+3=9$.
(i)

P A $=\frac{\text { Number of outcomes favrouableto } \mathrm{A}}{\text { Total number of possible outcomes }}=\frac{3}{12}=\frac{1}{4}$
(ii)

P B $=\frac{\text { Number of outcomes favorableto B }}{\text { Total number of possible outcomes }}=\frac{9}{12}=\frac{3}{4}$
Each of the three values, patience, honesty and kindness is important in one's life.
27. Diameter of upper end of bucket $=30 \mathrm{~cm}$
\therefore Radius (r_{1}) of upper end of bucket $=15 \mathrm{~cm}$
Diameter of lower end of bucket $=10 \mathrm{~cm}$
\therefore Radius $\left(r_{2}\right)$ of lower end of bucket $=5 \mathrm{~cm}$
Slant height (I) of frustum

$$
\begin{aligned}
& =\sqrt{r_{1}-r_{2}^{2}+h^{2}} \\
& =\sqrt{15-5^{2}+24^{2}}=\sqrt{10^{2}+24^{2}}=\sqrt{100+576} \\
& =\sqrt{676}=26 \mathrm{~cm}
\end{aligned}
$$

Area of metal sheet used to make the bucket
$=\pi r_{1}+r_{2} I+\pi r_{2}^{2}$
$=\pi 15+526+\pi 5^{2}$
$=520 \pi+25 \pi=545 \pi \mathrm{~cm}^{2}$
Cost of $100 \mathrm{~cm}^{2}$ metal sheet $=$ Rs 10
Cost of $545 \pi \mathrm{~cm}^{2}$ metal sheet
$=$ Rs. $\frac{545 \times 3.14 \times 10}{100}=$ Rs. 171.13
Therefore, cost of metal sheet used to make the bucket is Rs 171.13.
28. Given: I and m are two parallel tangents to the circle with centre O touching the circle at A and B respectively. DE is a tangent at the point C, which intersects / at D and m at E.

To prove: $\angle \mathrm{DOE}=90^{\circ}$
Construction: Join OC.
Proof:

In $\triangle O D A$ and $\triangle O D C$,
$O A=O C \quad$ (Radii of the same circle)
$A D=D C \quad$ (Length of tangents drawn from an external point to a circle are equal)

DO = OD (Common side)
$\triangle \mathrm{ODA} \cong \triangle O D C \quad$ (SSS congruence criterion)
$\therefore \angle \mathrm{DOA}=\angle \mathrm{COD}$
Similarly, \triangle OEB $\cong \triangle$ OEC
$\therefore \angle \mathrm{EOB}=\angle \mathrm{COE}$
Now, AOB is a diameter of the circle. Hence, it is a straight line.
$\angle \mathrm{DOA}+\angle \mathrm{COD}+\angle \mathrm{COE}+\angle \mathrm{EOB}=180^{\circ}$
From (1) and (2), we have:
$2 \angle \mathrm{COD}+2 \angle \mathrm{COE}=180^{\circ}$
$\Rightarrow \angle \mathrm{COD}+\angle \mathrm{COE}=90^{\circ}$
$\Rightarrow \angle \mathrm{DOE}=90^{\circ}$
Hence, proved.
29. Let the sides of the two squares be $x \mathrm{~cm}$ and ycm where $\mathrm{x}>\mathrm{y}$.

Then, their areas are x^{2} and y^{2} and their perimeters are $4 x$ and $4 y$.
By the given condition:

$$
\begin{align*}
& x^{2}+y^{2}=400 \tag{1}\\
& \text { and } 4 x-4 y=16 \\
& \Rightarrow 4(x-y)=16 \Rightarrow x-y=4 \\
& \Rightarrow x=y+4 \tag{2}
\end{align*}
$$

Substituting the value of x from (2) in (1), we get:

$$
\begin{aligned}
& (y+4)^{2}+y^{2}=400 \\
& \Rightarrow y^{2}+16+8 y+y^{2}=400 \\
& \Rightarrow 2 y^{2}+16+8 y=400 \\
& \Rightarrow y^{2}+4 y-192=0 \\
& \Rightarrow y^{2}+16 y-12 y-192=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y(y+16)-12(y+16)=0 \\
& \Rightarrow(y+16)(y-12)=0 \\
& \Rightarrow y=-16 \text { or } y=12
\end{aligned}
$$

Since, y cannot be negative, $\mathrm{y}=12$.
So, $x=y+4=12+4=16$
Thus, the sides of the two squares are 16 cm and 12 cm .
30.

$$
\begin{aligned}
& \frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x} \\
& \Rightarrow \frac{1}{2 a+b+2 x}-\frac{1}{2 x}=\frac{1}{2 a}+\frac{1}{b} \\
& \Rightarrow \frac{2 x-2 a-b-2 x}{2 x 2 a+b+2 x}=\frac{b+2 a}{2 a b} \\
& \Rightarrow \frac{-2 a+b}{2 x 2 a+b+2 x}=\frac{b+2 a}{2 a b} \\
& \Rightarrow \frac{-1}{x 2 a+b+2 x}=\frac{1}{a b} \\
& \Rightarrow 2 x^{2}+2 a x+b x+a b=0 \\
& \Rightarrow 2 x x+a+b x+a=0 \\
& \Rightarrow x+a \quad 2 x+b=0 \\
& \Rightarrow x+a=0 \text { or } 2 x+b=0 \\
& \Rightarrow x=-a, \text { or } x=\frac{-b}{2}
\end{aligned}
$$

31.

Given: A circle with centre O and a tangent $X Y$ to the circle at a point P
To Prove: OP is perpendicular to XY .
Construction: Take a point Q on XY other than P and join OQ .
Proof: Here the point Q must lie outside the circle as if it lies inside the tangent $X Y$ will become secant to the circle.

Therefore, OQ is longer than the radius OP of the circle, That is, $\mathrm{OQ}>\mathrm{OP}$. This happens for every point on the line XY except the point P.

So OP is the shortest of all the distances of the point O to the points on XY.

And hence OP is perpendicular to XY .
Hence, proved.
32. Given AP is $-12,-9,-6, \ldots, 21$

First term, $a=-12$
Common difference, $\mathrm{d}=3$
Let 21 be the $\mathrm{n}^{\text {th }}$ term of the A.P.
$21=a+(n-1) d$
$\Rightarrow 21=-12+(\mathrm{n}-1) \times 3$
$\Rightarrow 33=(\mathrm{n}-1) \times 3$
$\Rightarrow \mathrm{n}=12$
Sum of the terms of the AP $=S_{12}$
$=\frac{n}{2} 2 a+n-1 d=\frac{12}{2}-24+11 \times 3=54$
If 1 is added to each term of the AP, the sum of all the terms of the new AP will increase by n, i.e., 12.
\therefore Sum of all the terms of the new AP $=54+12=66$
33. Let $A C$ and $B D$ be the two poles of the same height $h \mathrm{~m}$.

Given $A B=80 \mathrm{~m}$
Let $\mathrm{AP}=\mathrm{x} \mathrm{m}$, therefore, $\mathrm{PB}=(80-\mathrm{x}) \mathrm{m}$
In $\triangle \mathrm{APC}$,
$\tan 30^{\circ}=\frac{\mathrm{AC}}{\mathrm{AP}}$
$\frac{1}{\sqrt{3}}=\frac{h}{x}$
In $\triangle B P D$,
$\tan 60^{\circ}=\frac{\mathrm{BD}}{\mathrm{AB}}$
$\sqrt{3}=\frac{h}{80-x}$

Dividing (1) by (2),
$\frac{\frac{1}{\sqrt{3}}}{\sqrt{3}}=\frac{\frac{h}{x}}{\frac{h}{80-x}}$
$\Rightarrow \frac{1}{3}=\frac{80-x}{x}$
$\Rightarrow \mathrm{x}=240-3 \mathrm{x}$
$\Rightarrow 4 \mathrm{x}=240$
$\Rightarrow x=60$
From (1),
$\frac{1}{\sqrt{3}}=\frac{h}{x}$
$\Rightarrow \mathrm{h}=\frac{60}{\sqrt{3}}=20 \sqrt{3} \mathrm{~m}$
Thus, the height of both the poles is $20 \sqrt{3} \mathrm{~m}$ and the distances of the point from the poles are 60 m and 20 m .
34. The given vertices are $A(x, y), B(1,2)$ and $C(2,1)$.

It is know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by

$$
\frac{1}{2}\left|x_{1} y_{2}-y_{3}+x_{2} y_{3}-y_{1}+x_{3} y_{1}-y_{2}\right|
$$

\therefore Area of $\triangle A B C$
$=\frac{1}{2}|\times 2-1+1 \times 1-y+2 y-2|$
$=\frac{1}{2}|x+1-y+2 y-4|$
$=\frac{1}{2}|x+y-3|$
The area of $\Delta A B C$ is given as 6 sq units.
$\Rightarrow \frac{1}{2}[x+y-3]=6 \Rightarrow x+y-3=12$
$\therefore \mathrm{x}+\mathrm{y}=15$

