1. If the vertices of a triangle are $A(0,4,1), B(2,3,-1)$ and $C(4,5,0)$, then the orthocenter of $\triangle A B C$, is
(a) $(4,5,0)$
(b) $(2,3,1)$
(c) $(-2,3,-1)$
(d) $(2,0,2)$
?. The equation of normal to the curve $y=(1+x)^{y}+\sin ^{-1}\left(\sin ^{2} x\right)$ at $x=0$ is
(a) $x+y=1$
(b) $x-y=1$
(c) $x+y=-1$
(d) $x-y=-1$
2. The value of c from the Lagrange's mean value theorem for which $f(x)=\sqrt{25-\overline{x^{2}}}$ in $[1,5]$, is
(a) 5
(b) 1
(c) $\sqrt{15}$
(d) None of these
3. if $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]$, then $A .(\operatorname{adj} A)$ is ewqual to
(a) A
(b) $|\mathrm{A}|$
(c) $\mathrm{A} \mid . /$
(d) None of these
4. If there is an error of $\mathrm{k} \%$ in measuring the edge of a cube, then per cent in estimating its volume is
(a) k
(b) 3 k
(c) $\frac{k}{3}$
(d) None of these
5. If the system of equations $x+k y-z=0,3 x-k y-z=0$ and $x-3 y+z=0$, has non zero solution, then k is equal to
(a) $-1 \quad$ (b) 0
(c) 1 (d) 2
?
6. If the points $(1,2,3)$ and $(2,-1,0)$ lie on the opposite sides of the plane $2 x+3 y-2 z=k$, then
(a) $k<1$
(b) $\mathrm{k}>2$
(C) $\mathrm{k}<1$ or $\mathrm{k}>2$
(d) $1<k<2$
7. If $\Delta(x)=\left|\begin{array}{ccc}1 & \cos x & 1-\cos x \\ 1+\sin x & \cos x & 1+\sin x-\cos x \\ \sin x & \sin x & 1\end{array}\right|$, then $\int_{0}^{c / 4} \Delta(x) \mathrm{dx}$ is equal to
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(b) 0
(d) $-\frac{1}{4}$
8. Let $f^{\prime}(x)$, be differentiable $\forall x$. If $f(1)=-2$ and $f^{\prime}(x) \geq 2 \forall x \in[1,6]$, then
(a) $f(6)<8$
(b) $f(6) \geq 8$
(c) $f(6) \geq 5$
(d) $f(G) \leq 5$
9. If $\Delta_{r}=\left|\begin{array}{ccc}2 r-1 & m_{c_{r}} & 1 \\ m^{2}-1 & 2^{m} & m+1 \\ \sin ^{2}\left(m^{2}\right) & \sin ^{2} m & \sin ^{2}(m+1)\end{array}\right|$, then the value of $\sum_{r=0}^{m} \Delta$, is
(a) 1
(b) O
(c) 2
(d) None of these
10. Two lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=2$ intersect at a point, if k is equal to
(a) $\frac{2}{9}$
(b) $\frac{1}{2}$
(c) $\frac{9}{2}$
(d) $\frac{1}{6}$
11. The minimum value of $\frac{x}{\log x}$ is
(a) e
(b) $\frac{1}{e}$
(c) e^{2}
(d) e^{3}
12. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the poibt $(1,1)$ and the coordinate axes lies in the first quadrant. If its area is 2 , then the value of b is
(a) -1
(b) 3
(c) -3
(d) 1
13. The statement $(p \Rightarrow q) \Leftrightarrow(\sim p \Lambda q)$ is a
(a) tautology
(b) contradiction
(c) Neither (a) nor (b)
(d) None of these

1!.) If $x+1 y=\frac{3}{2+\cos \theta+i \sin \phi}$ then $x^{2}+y^{2}$ is eq9ual to
(a) $3 x-4$
(b) $4 x-3$
(c) $4 x+3$
(d) None of these
16. The negation of $(\sim p \wedge q) \vee(p \wedge \sim q)$ is
(a) $(p \vee \sim q) \vee(\sim p \vee q)$
(b) $(p \vee \sim q) \wedge(\sim p \vee q)$?
(c) $(p \wedge \sim q) \wedge(\sim p \vee q)$
(d) $(p \wedge \sim q) \wedge(p \vee \sim q)$
$1{ }^{\prime \prime}$. The normals at three points P, Q and R of the parabola $y^{2}=4 a x$ meet at (h, k). The centroid of the $\triangle P Q R$ lies on
(a) $x=0$
(h) $y=0$
(c) $x=-a$
(d) $y=a$
18. The minimum area of the triangle formed by any tengent to the ellipse $\frac{x^{1}}{a^{1}}+\frac{y^{2}}{b^{2}}=1$ with the coordinate axes is
(a) $a^{2}+b^{2}$
(b) $\frac{(a+b)^{2}}{2}$
(c) ab
(d) $\frac{(a-b)^{2}}{2}$
19. If the line $\mid x+m y-n=0$ will be a normal to the hyperbola, then $\frac{a^{2}}{n^{2}}-\frac{p^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{k}$, where k is equal to
(a) n
(b) n^{2}
(c) n^{3}
(d) None of these
20. If $\cos \alpha+I \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+I \sin \gamma$ and $\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1$, then $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)$ is equal to
(a) $\frac{3}{2}$
(b) $-\frac{3}{2}$
(c) 0
(d) 1
21. If $|z+4| \leq 3$, then the greatest and the least value of $|z+1|$ are
(a) $-1,6$
(b) 6,0
(c) 6,3
(d) None of these
22. The angle between lines joining the origin to the point of intersection of the line $\sqrt{\overline{3} \bar{x}}+y=2$ and the curve $y^{2}-x^{2}=4$
(a) $\tan ^{-1}-\frac{2}{\sqrt{3}}$
(b) $\pi / 6$
(c) $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
(d) $\pi / 2$
23. If the area of the triangle on the complex plane formed by the points $z, z+i z$ and $i z$ is 200 , then the value of $3|z|$ must be equal to
(a) 20
(b) 40
(c) 60
(d) 80
24. Equation of the chord of the hyperbola $25 x^{2}-16 y^{2}=400$ which is bisected at trhe point $(6,2)$, is
(a) $6 x-7 y=418$
(b) $75 x-16 y=418$
(c) $25 x-4 y=400$
(d) None of these
25. If a plane meets the coordinate axes at A, B and C such that the centroid of the triangle is $(1,2,4)$, then the equation of the plane is
(a) $x+2 y+4 z=12$
(b) $4 x+2 y+z=12$
(c) $x+2 y+4 z=3$
(d) $4 x+2 y+z=3$
26. The volume of the tetrahedron included between the plane $3 x+4 y-5 z-60=0$ and the coordinate planes is
(a) 60
(b) 600
(c) 720
(d) 400
$-$
27. $\int_{0}^{2 \pi}(\sin x+|\sin x|) d x$ is equal to
(a) 0
(b) 4
(c) 8
(d) 1
28. The value of $\int_{0}^{-\sqrt{2}}\left[x^{2}\right] d x$, where [.] is the greatest integer function, is
(a) $2-\sqrt{2}$
(b) $2+\sqrt{2}$
(c) $\sqrt{2}-1$
(d) $\sqrt{2}-2$
29. If $I(m, n)=\int_{0}^{1} t^{m n}(1+t)^{n} d t$, then the expression for $I(m, n)$ in terms of $I(m+1, n+1)$ is
(a) $\frac{2^{n}}{n+1} \cdot \frac{n}{n+1} \cdot I(m+1, n-1)$
(b) $\frac{n}{m+1} \cdot 1(n+1, n-1)$
(c) $-\frac{2 n}{m+1}+\frac{n}{n+1}, I(m+1, n-1)$
(d) $\frac{m}{n+1}, 1(m+1, n-1)$
30. The area in the first quadrant between $x^{2}+y^{2}=\pi^{2}$ and $y=\sin x$ is
(a) $\frac{\pi^{3}-a}{4}$
(b) $\frac{\pi^{3}}{4}$
(c) $\frac{\pi^{1}-16}{4}$
(b) $\frac{\pi^{3}-8}{2}$
31. The area bounded by $y=x e^{|x|}$ and lines $|x|=1, y=0$ is
(a) 4 sq units
(b) 6 sq units
(c) 1 sq unit
(d) 2 sq units
32. The solution of $\frac{d y}{d x}=\frac{x^{2}+y^{2}+1}{2 x y}$, satisfying $y(1)=0$ is given by
(a) hyperbola
(b) circle
(c) ellipse
(d) parabola
33. If $x \cdot \frac{d y}{d x}+y=x \cdot \frac{f(x y)}{f^{\prime}(x y y)}$ then $f(x y)$ is equal to
(a) $k \cdot e^{\frac{x^{2}}{2}}$
(b) $k, e^{y^{2} / 2}$
(c) $\mathrm{k} \cdot \mathrm{e}^{x^{2}}$
(d) $\mathrm{k} \cdot \mathrm{e}^{\frac{\mathrm{xy}}{2}}$
34. The differential equation of the rectangular hyberbola nyperbola, where axes are the asymptotes of the hyperbola, is
(a) $y_{d x}^{d x}=x$
(b) $x \frac{d y}{d x}=-y$
(b) $x \frac{d y}{d x}=y$
(d) $x d y+y d x=c$
35. The length of longer diagonal of the parallelogram constructed on $5 a+2 b$ and $a-3 b$, if it the given that $|a|=2 \sqrt{2},|b|=3$ and the angle between a and b is $\frac{\pi}{4}$, is
(a) 15
(b) $\sqrt{113}$
(c) $\sqrt{593}$
(d) $\sqrt{369}$
36. If $r=\alpha b x c+\beta c x a+\gamma a x x b$ and $[a b c]=2$,
(a) r.Ibxc+cxa+axb]
(b) $\frac{1}{2} \cdot r \cdot(a+b+c)$
(c) $2 r \cdot(a+b+c)$
(d) 4
37. If a, b, c are three non-coplanar vectors and p, q, r are reciprocal vectors, then (la+mb+nc).(lp+mq+nr) is equal to
(a) $1+m+n$
(b) $\mathrm{l}^{3}+\mathrm{m}^{3}+\mathrm{n}^{3}$
(c) $1^{2}+m^{2}+n^{2}$
(d) None of these
38. If the integers m and n are choserl at random from 1 to 100 , then the probability that a number of the form $7^{n}+7^{m}$ is divisible by 5 , equals to
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{1}{8}$
(d) $\frac{1}{3}$
39. Let X denote the sun of the numbers obtained when two fair dice are rolled. The variance and standard deviation of X are
(a) $\frac{31}{6}$ and $\sqrt{\frac{31}{6}}$
(b) $\frac{35}{6}$ and $\sqrt{\frac{35}{6}}$
(c) $\frac{17}{6}$ and $\sqrt{\frac{17}{6}}$
(d) $\frac{31}{6}$ and $\sqrt{\frac{35}{6}}$
40. A four digit number is formed by the digits $1,2,3,4$ with no repetition. The probability that the number is odd, is
$\begin{array}{ll}\text { (a) zerb } & \text { (b) } \frac{1}{3}\end{array}$
$\begin{array}{ll}\text { (c) } \frac{1}{4} & \text { (d) None of these }\end{array}$

