ISC 2010

COMPUTER SCIENCE PAPER 1

THEORY

Question 1.

a) If $X=A^{\prime} B C+A B^{\prime} C+A B C+A^{\prime} B C^{\prime}$ then find the value of X when $A=1 ; B=0 ; C=1$
b) Verify if, $P .\left(\sim P+Q^{\prime}\right)=(P \rightarrow Q)$ using truth table.
c) Draw the logic circuit of NOR using NAND gate only.
d) Convert the following function into its Canonical Sum-Of_products form:
$F(X, Y, Z)=\sum(0,1,5,7)$
e) Show that the dual of $P^{\prime} Q R^{\prime}+P Q^{\prime} R+P^{\prime} Q^{\prime} R$ is equal to the complement of $P Q^{\prime} R+Q\left(P^{\prime} R^{\prime}+P R^{\prime}\right)$
[$2 \times 5=10$]

Question 2.

a) State the difference between an interface and a class.
b) Convert the following infix notation to postfix notation.
$(A+B) / C *(D+E)$
c) A character array $B[7][6]$ has a base address 1046 at 0,0 . Calculate the address at $\mathrm{B}[2][3]$ if the array is stored Column Major wise. Each character requires 2 bytes of storage.
d) State the use of exception handling. Name the two types of exceptions.
e) i) What is the worst-case complexity of the following code segment :

```
for(int i=0;i<N;i++)
{
            Sequence of statements
}
for(int j=0;j<M;j++)
{
            Sequence of statements
}
```

ii) How would the complexity change if the second loop went to N instead of M ?

Question 3.

```
a) The following function numbers(int) and numbers1(int) are a part of some class. Answer the
    questions given below showing the dry run/working:
            public void numbers(int n)
    {
        if(n>0)
        {
        System.out.print(n+" ");
        numbers(n-2);
        System.out.print(n+" ");
        }
    }
    public String numbers1(int n)
    {
        If(n<=0)
            return "";
        return(numbers(n-1)+n+" ";
    }
i) What will be the output of the function numbers(int n) when n=5? [ 2 ]
ii) What will the function numbers1(int n) return when n=6? [ 2 ]
iii) State in one line what is the function numbers1(int) doing apart from recursion? [ 1 ]
b) The following function is a part of some class. It sorts the array a[] in ascending order using insertion sort technique. There are some places in the code marked by ?1?, ?2?, ?3?, ?4?, ?5? which must be replaced by expression/ statement so that the function works correctly.
```

```
    void insertsort(int a[])
```

 void insertsort(int a[])
 {
 int m= ?1?;
 int b,l,t;
 for(i=?2?;i<m;i++)
 {
 t=a[i];
 b=i-1;
 while(?3?>=0 && t<a[b])
 {
 a[b+1]= a[b];
 ?4?;
 }
 ?5?=t;
 }
 }
 i) What is the expression or statement at ?1? [1]
 ii) What is the expression or statement at ?2? [1]
 iii) What is the expression or statement at ?3? [1]
 iv) What is the expression or statement at ?4? [1]
 v) What is the expression or statement at ?5? [1]
    ```

\section*{Part II}

\section*{Section A}

Answer any three questions

\section*{Question 4.}
a) Given \(F(P, Q, R, S)=\sum(0,2,5,7,8,10,11,13,14,15)\)
i) Reduce the above expression by using 4- variable K-Map, showing the various groups ( i.e. octals, quads and pairs).
ii) Draw the logic gate diagram of the reduced expression using NAND gate only.
b) Given \(F(A, B, C, D)=\)
\((A+B+C+D) \cdot\left(A+B+C+D^{\prime}\right) \cdot\left(A+B+C^{\prime}+D^{\prime}\right) \cdot\left(A+B+C^{\prime}+D\right) \cdot\left(A+B^{\prime}+C+D^{\prime}\right) \cdot\left(A+B^{\prime}+C^{\prime}+D^{\prime}\right) \cdot\left(A^{\prime}+B+C+D\right) \cdot\left(A^{\prime}+B+C^{\prime}+\right.\)
D)
i) Reduce the above expression by using 4- variable K-Map, showing the various groups ( i.e. octals, quads and pairs).
ii) Draw the logic gate diagram of the reduced expression using NOR gate only.
[ \(5 \times 2=10\) ]

\section*{Question 5.}

A government institution intends to award a medal to a person who qualifies any one of the following criteria:

The person should have been an Indian citizen and had lost his/her life in a war but has not completed 25 years of service.

OR
The person must be an Indian citizen and has served the nation for a continuous period of 25 years or more but has not lost his/her life in a war.

OR
The person is not an Indian citizen but has taken active part in activities for the upliftment of the nation.

The inputs are:
INPUTS
A
B Has a continuous service of more than 25 years
C Lost his/her life in a war
D Taken part in activities for upliftment of the nation

Output
X
Denotes eligible for medal [ 1 indicates YES ad 0 indicates NO in all cases]
a) Draw the truth table for the inputs and outputs given above and write the POS expression for \(X(A, B, C, D)\).
b) Reduce \(X(A, B, C, D)\) using Karnaugh's map.

Draw the logic gate diagram for the reduced POS expression for \(X(A, B, C, D)\) using AND and OR gate. You may use gates with two or more inputs. Assume that the variable and their complements are available as inputs.
[ \(5 \times 2\) = 10]

\section*{Question 6.}
a) What are Maxterms? Convert the following function as a Product of Maxterms:
\[
F(P, Q, R)=(P+Q) \cdot\left(P^{\prime}+R^{\prime}\right)
\]
b) State whether the following expression is a Tautology or Contradiction with the help of a truth table:
\[
(\mathrm{X} \leftrightarrow \mathrm{Z}) .[(\mathrm{X} \rightarrow \mathrm{Y}) .(\mathrm{Y} \rightarrow \mathrm{Z})]
\]
c) What is a Multiplexer? Draw the truth table and logic diagram of a \(8: 1\) multiplexer.
[ \(2+3+5=10\) ]

\section*{Question 7.}
a) Draw the circuit diagram for a 3 to 8 decoder.
b) Draw the truth table for a half adder. Also derive a POS expression for the half adder and draw its logic circuit.
c) Simplify the following expression and also draw the circuit for the reduced expression. [ Show the step wise working along with the laws used.]
\[
F=X .\left(Y+Z .(X . Y+X . Z)^{\prime}\right)
\]

\section*{Section B}

Answer any 2 questions.
Each program should be written in such a way that it clearly depicts the logic of the problem. This can be achieved by using mnemonic names and comments in the program.

\section*{Question 8.}

The co-ordinates of a point \(P\) on a two-dimensional plane can be represented by \(P(x, y)\) with \(x\) as the \(x\) co-ordinate and \(y\) as the \(y\) co-ordinate. The co-ordinates of midpoint of two points \(\mathrm{P} 1(\mathrm{x} 1, \mathrm{y} 1)\) and \(\mathrm{P} 2(\mathrm{x} 2, \mathrm{y} 2)\) can be calculated as \(\mathrm{P}(\mathrm{x}, \mathrm{y})\) where:
\(x=x 1+x 2 / 2, y=y 1+y 2 / 2\)
Design a class Point with the following details:
Class name : Point

Data members
\(x\) : stores the \(x\) co-ordinate
y : stores the y co-ordinate

Member functions:
Point() : constructor to initialize \(\mathrm{x}=0\) and \(\mathrm{y}=0\)
void readPoint() : accepts the co-ordinates \(x\) and \(y\) of a point
Point midpoint(Point A, Point B): calculates and returns the midpoint of the two points A and B.
void displaypoint()
displays the co-ordinates of a point
Specify the class Point giving details of the constructor( ), member functions void readPoint(), Point midpoint(Point, Point) and void displaypoint() along with the main function to create an object and call the functions accordingly to calculate the midpoint between any two given points.

\section*{Question 9.}

Input a word in uppercase and check for the position of the first occurring vowel and perform the following operation.
i) Words that begin with a vowel are concatenated with " \(\gamma\) ". For example, EUROPE becomes EUROPEY.
ii) Words that contain a vowel in between should have the first part from the position of the vowel till end, followed by the part of the string from beginning till position of the vowel and is concatenated by " C ". For example PROJECT becomes OJECTPRC.
iii) Words which do not contain a vowel are concatenated with " \(N\) ". For example, SKY becomes SKYN.
Design a class Rearrange using the description of the data members and member functions given below:
\begin{tabular}{lll} 
Class name & \(:\) & Rearrange \\
Data members & \(:\) & to store a word \\
Txt & \(:\) & to store the rearranged word \\
Cxt & \(:\) & to store the length of the word \\
len & \(:\) & constructor to initialize the instance variables \\
Member functions & to accept the word input in UPPERCASE \\
Rearrange() & converts the word into its changed form and stores it in \\
void readword() & \begin{tabular}{l} 
string Txt \\
displays the original and the changed word
\end{tabular} \\
void convert() & \(:\) &
\end{tabular}

Specify the class Rearrange giving the details of the constructor(), void readword(), void convert() and void display(). Define a main function to create an object and call the function accordingly to enable the task.

Question 10.
Design a class Change to perform string related operations. The details of the class are given below:

Class name
Data members
str
newstr
len
Member functions
Change()
void inputword()
char caseconvert(char ch)
void recchange(int)
void display()

Change
stores the word
stores the changed word
stores the length of the word
default constructor
to accept a word
converts the case of the character and returns it
extracts characters using recursive technique and changes its case using caseconvert() and forms a new word
displays both the words
a) Specify the class Change, giving details of the constructor(), member functions void inputword(), char caseconvert(char ch), void recchange(int) and void display(). Define the main function to create an object and call the functions accordingly to enable the above change in the given word.
b) Differentiate between finite and infinite recursion.

\section*{Section C}

\section*{Answer any 2 questions.}

Each program/algorithm should be written in such a way that it clearly depicts the logic of the problem step wise. This can also be achieved by using pseudo codes.
(Flowcharts are not required)
The programs must be written in Java. The algorithm must be written in general standard form wherever required.

\section*{Question 11.}

A super class Worker has been defined to store the details of a worker. Define a sub class Wages to compute the monthly wages for the worker. The details of both the classes are given below:
\begin{tabular}{lll}
\begin{tabular}{l} 
Class name \\
Data members \\
Name \\
Basic \\
Member functions \\
Worker(....)
\end{tabular} & \(:\) & Worker \\
void display() & \(:\) & \begin{tabular}{l} 
to store the name of the worker \\
to store the basic pay in decimal
\end{tabular} \\
class name & \(:\) & \begin{tabular}{l} 
parameterized constructor to assign values to \\
the instance variables \\
display worker details
\end{tabular} \\
\begin{tabular}{l} 
Data members \\
hrs \\
rate \\
wage \\
Member functions \\
Wages(....)
\end{tabular} & \(:\) & \begin{tabular}{l} 
Wages
\end{tabular} \\
double overtime( ) & \(:\) & \begin{tabular}{l} 
stores the hours worked \\
stores rate per hour \\
stores the overall wage of the worker
\end{tabular} \\
parameterized constructor to assign values to \\
the instance variables of both classes \\
calculates and returns the overtime amount as \\
(hours * rate )
\end{tabular}

Specify the class Worker giving details of the constructor() and void display(). Using the concept of inheritance, specify the class Wages giving details of the constructor(), double overtime() and void display(). The main function need not be written.

\section*{Question 12.}

Define a class Repeat which allows the user to add elements from one end (rear) and remove elements from one end (rear) and remove elements from the other end (front) only.

The following details of the class Repeat are given below:
\begin{tabular}{|c|c|c|}
\hline Class name & : & Repeat \\
\hline \multicolumn{3}{|l|}{Data members} \\
\hline st[] & & an array to hold a maximum of 100 integer elements \\
\hline cap & - & stores the capacity of the array \\
\hline f & . & to point to the index of the front \\
\hline r & : & to point to the index of the rear \\
\hline \multicolumn{3}{|l|}{Member functions} \\
\hline Repeat(int m) & : & constructor to initialize the data members cap \(=m, f=0, r=0\) and to create the integer array \\
\hline void pushvalue(int v) & : & to add integers from the rear index if possible else display the message "overflow" \\
\hline int popvalue() & : & to remove and return element from the front, if array is empty then return -9999 \\
\hline void disp() & : & displays the elements present in the list \\
\hline
\end{tabular}

a) Specify the class Repeat giving details of the constructor(int), member function void
 pushvalue(int), int popvalue() and void disp(). The main function need not be written.
b) What is the common name of the entity described above? [1]
c) On what principle does this entity work?

\section*{Question 13.}
a) A linked list is formed from the objects of the class, class ListNodes
\{ int item; ListNodes next;
\}
Write a method OR an algorithm to compute and return the sum of all integers items stored in the linked list. The method declaration is specified below:
int listsum(ListNodes start);
b) What is Big ' \(O\) ' notation? State its significance.
c) Answer the following from the diagram of a Binary tree given below:

i) Name the parent node of E. ..... [1]
ii) Write the postorder tree traversal. ..... [1]
iii) Write the internal nodes of the tree. ..... [1]
iv) State the level of the root of the tree. ..... [1]```

