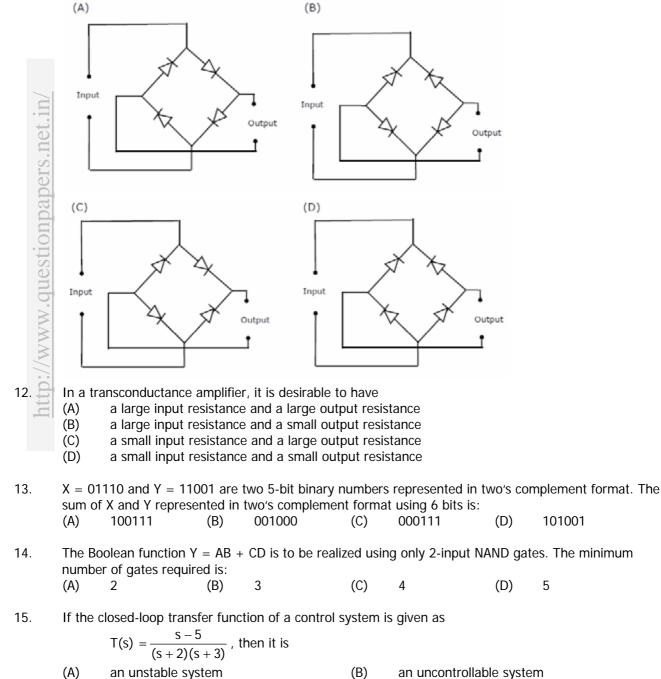

# GATE question papers: Electronics and Communication Engineering 2007 (EC)






9. The electron and hole concentrations in an intrinsic semiconductor are n<sub>i</sub> per cm<sup>3</sup> at 300 K. Now, if acceptor impurities are introduced with a concentration of N<sub>A</sub> per cm<sup>3</sup> (where N >> n), the electron concentration per cm<sup>3</sup> at 300 K will be

(A) 
$$n_i$$
 (B)  $n_i + N_A$  (C)  $N_A - n_i$  (D)  $\frac{n_i^-}{N_A}$ 

- 10. In a p<sup>+</sup> n junction diode under reverse bias, the magnitude of electric field is maximum at
  - (A) the edge of the depletion region on the p-side
  - (B) the edge of the depletion region on the n-side
  - (C) the  $p^+$  n junction
  - (D) the centre of the depletion region on the n-side
- 11. The correct full wave rectifier circuit is:



(C) a minimum phase system (D) a non-minimum phase system

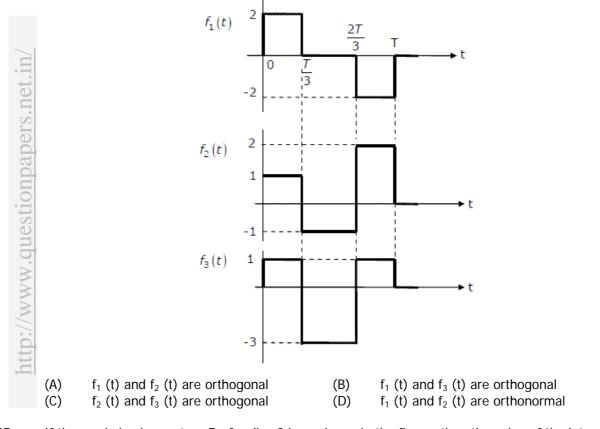
16. If the Laplace transform of a signal y (t) is 
$$Y(s) = \frac{1}{s(s-1)}$$
, then its final value is:  
(A) -1 (B) 0 (C) 1 (D) unbounded

- 17. If R ( $\tau$ ) is the autocorrelation function of a real, wide-sense stationary random process, then which of the following is NOT true?
  - $R(\tau) = R(-\tau)$ (A)
  - (B)  $|\mathsf{R}(\tau)| \leq \mathsf{R}(0)$
  - (C)  $R(\tau) = -R(-\tau)$
  - (D) The mean square value of the process is R (0)
- 18. If S (f) is the power spectral density of a real, wide-sense stationary random process, then which of the following is ALWAYS true?

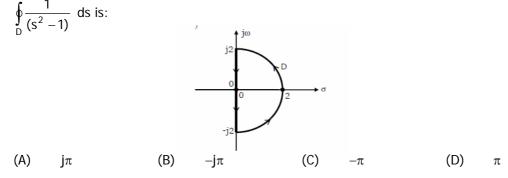
(A) 
$$S(0) \ge S(f)$$
 (B)  $S(f) \ge 0$   
(C)  $S(-f) = -S(f)$  (D)  $\int_{-\infty}^{\infty} S(f) df = 0$ 

A plane wave of wavelength  $\lambda$  is traveling in a direction making an angle 30° with positive x-axis and 90° with positive y-axis. The  $\vec{E}$  field of the plane wave can be represented as (E<sub>0</sub> is constant)

(A) 
$$\vec{E} = \hat{y}E_0e^{j\left(\omega t - \frac{\sqrt{3}\pi}{\lambda}x - \frac{\pi}{\lambda}z\right)}$$
  
(B)  $\vec{E} = \hat{y}E_0e^{j\left(\omega t - \frac{\pi}{\lambda}x - \frac{\sqrt{3}\pi}{\lambda}z\right)}$   
(C)  $\vec{E} = \hat{y}E_0e^{j\left(\omega t + \frac{\sqrt{3}\pi}{\lambda}x + \frac{\pi}{\lambda}z\right)}$   
(D)  $\vec{E} = \hat{y}E_0e^{j\left(\omega t - \frac{\pi}{\lambda}x + \frac{\sqrt{3}\pi}{\lambda}z\right)}$ 

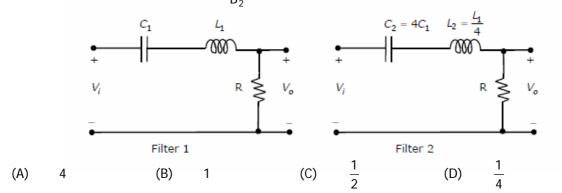

nttp://www.guestionpapers.net If C is a closed curve enclosing a surface S, then the magnetic field intensity  $\vec{H}$ , the current density 20.  $\overrightarrow{J}$  and the electric flux density  $\overrightarrow{D}$  are related by

(A) 
$$\iint_{S} \vec{H}.d\vec{s} = \oint_{C} \left( \vec{J} + \frac{\partial \vec{D}}{\partial t} \right).d\vec{l}$$
(B) 
$$\int_{C} \vec{H}.d\vec{l} = \oiint_{S} \left( \vec{J} + \frac{\partial \vec{D}}{\partial t} d \right).d\vec{s}$$
(C) 
$$\oiint_{S} \vec{H}.d\vec{s} = \int_{C} \left( \vec{J} + \frac{\partial \vec{D}}{\partial t} \right).d\vec{l}$$
(D) 
$$\oint_{C} \vec{H}.d\vec{l} = \iint_{S} \left( \vec{J} + \frac{\partial \vec{D}}{\partial t} \right).d\vec{s}$$

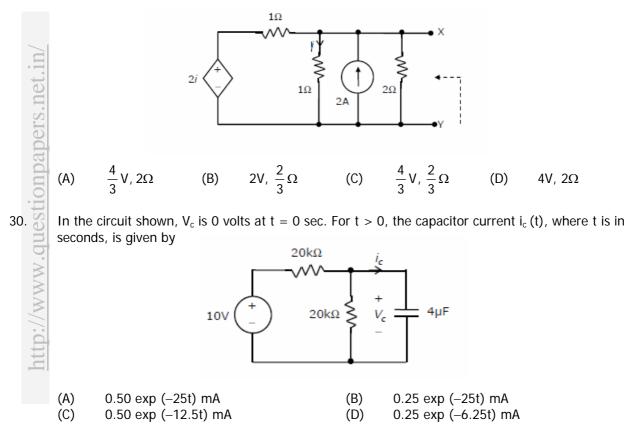

#### Q. 21 - Q.75 carry Two Marks Each

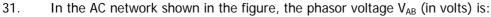
- It is given that X1, X2.....XM are M non-zero, orthogonal vectors. The dimension of the vector space 21. spanned by the 2M vectors  $X_1$ ,  $X_2$ .....XM,  $-X_1$ ,  $-X_2$ ....-XM is: (A) 2M (B) M + 1
  - (C) Μ (D) dependent on the choice of  $X_{11}$ ,  $X_{2}$ .....XM
- Consider the function f (x) =  $x^2 x 2$ . The maximum value of f (x) in the closed interval [-4, 4] is: 22. -2.25(A) 10 (B) 10 (C) (D) indeterminate
- An examination consists of two papers, Paper 1 and Paper 2. The probability of failing in Paper 1 is 0.3 23. and that in Paper 2 is 0.2. Given that a student has failed in Paper 2, the probability of failing in Paper 1 is 0.6. The probability of a student failing in both the papers is:
  - (D) (A) 0.5 (B) 0.18 0.12 0.06 (C)

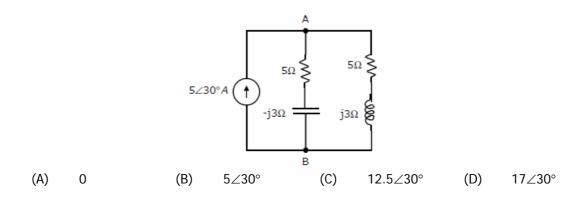
- 24. The solution of the differential equation  $k^2 \frac{d^2y}{dx^2} = y y_2$  under the boundary conditions (i)  $y = y_1$  at
  - x = 0 and (ii)  $y = y_2$  at  $x = \infty$ , where k,  $y_1$  and  $y_2$  are constants, is(A)  $y = (y_1 y_2) \exp(-x/k^2) + y_2$ (B)  $y = (y_2 y_1) \exp(-x/k) + y_1$ (C)  $y = (y_1 y_2) \sinh(x/k) + y_1$ (D)  $y = (y_1 y_2) \exp(-x/k) + y_2$
- 25. The equation  $x^3 x^2 + 4x 4 = 0$  is to be solved using the Newton-Raphson method. If x = 2 is taken as the initial approximation of the solution, then the next approximation using this method will be:
  - (A)  $\frac{2}{3}$  (B)  $\frac{4}{3}$  (C) 1 (D)  $\frac{3}{2}$
- 26. Three functions  $f_1$  (t),  $f_2$  (t) and  $f_3$  (t), which are zero outside the interval [0, T], are shown in the figure. Which of the following statements is correct?




27. If the semi-circular contour D of radius 2 is as shown in the figure, then the value of the integral  $\oint \frac{1}{\sqrt{1-1}} ds$  is:





Page 4 of 17


28. Two series resonant filters are as shown in the figure. Let the 3-dB bandwidth of Filter 1be B<sub>1</sub> and that of Filter 2 be B<sub>2</sub>. The value of  $\frac{B_1}{B_2}$  is:



29. For the circuit shown in the figure, the Thevenin voltage and resistance looking into X-Y are:

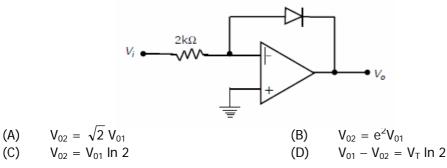




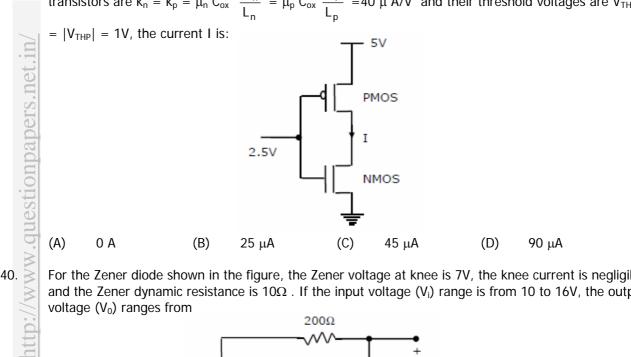


32. A p<sup>+</sup> n junction has a built-in potential of 0.8 V. The depletion layer width at a reverse bias of 1.2V is 2 m. For a reverse bias of 7.2 V, the depletion layer width will be:
(A) 4 m
(B) 4.9 m
(C) 8 m
(D) 12 m

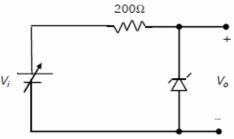
33. Group I lists four types of p-n junction diodes. Match each device in Group I with one of the option in Group II to indicate the bias condition of that device in its normal mode of operation.


|     |                        | Group                    | II to Ind                                 |                                            | olas cor<br>Group                |                                  | r that dev                                                        | lice in i            | Group I                 |           | r operat        | ion.                  |             |
|-----|------------------------|--------------------------|-------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------|----------------------|-------------------------|-----------|-----------------|-----------------------|-------------|
|     |                        | (A)<br>(B)<br>(C)<br>(D) | P - 1<br>P - 2<br>P - 2<br>P - 2<br>P - 2 | Q - 2<br>Q - 1<br>Q - 2                    | r cell<br>ER diod                |                                  | de                                                                | • •                  | ward bias<br>verse bias |           |                 |                       |             |
|     | 34.                    |                          | C current<br>ort factor                   | 0                                          | of a BJ                          | T is 50. <i>A</i>                | Assuming                                                          | that th              | e emitter               | injectior | n efficiei      | ncy is 0.99           | 5, the base |
|     | 35. Jet. 10/           | (A)<br>Group             | 0.980                                     | ur differer                                | (B)<br>nt semio                  | 0.985<br>conducto                | or devices                                                        | (C)<br>5. Match      | 0.990<br>n each dev     | vice in G | (D)<br>roup I v | 0.995<br>vith its cha | racteristic |
|     | rs.n                   | proper                   |                                           | Group                                      | İ                                |                                  |                                                                   | Group                | П                       |           |                 |                       |             |
| 36. | tionpape               |                          |                                           | (P) BJT<br>(Q) MOS<br>(R) LASI<br>(S) JFET | ER diod                          |                                  | (1) Pop<br>(2) Pinc<br>(3) Earl<br>(4) Flat                       | h-off vo<br>y effect | Ū                       |           |                 |                       |             |
|     | ww.questionpapers.net. | (A)<br>(B)<br>(C)<br>(D) | P - 3<br>P - 1<br>P - 3<br>P - 3          | Q - 4<br>Q - 4                             | R - 4<br>R - 3<br>R - 1<br>R - 1 | S - 2<br>S - 2<br>S - 2<br>S - 4 |                                                                   |                      |                         |           |                 |                       |             |
|     | http://wv              | For the                  |                                           | p circuit s                                | hown ii<br>۱۸۶<br>۱۸۶<br>۱۸۶     |                                  | ure, $V_0$ is<br>$2k\Omega$<br>$-\sqrt{-}$<br>+<br>+<br>$k\Omega$ |                      | • V <sub>o</sub>        |           |                 |                       |             |
|     |                        | (A)                      | -2 V                                      |                                            | (B)                              | -1 V                             |                                                                   | (C)                  | –0.5 V                  |           | (D)             | 0.5 V                 |             |
|     | 37.                    | transis                  | tor is vei                                | cuit shown<br>ry large a<br>e BJT is:      |                                  |                                  |                                                                   |                      |                         |           | 10kΩ            |                       |             |
|     |                        | (A)                      | cut-off                                   |                                            |                                  |                                  |                                                                   |                      | Г                       | $\neg$    |                 | († )                  |             |

- (A) cut-off
- (B) saturation
- (C) normal active
- (D) reverse active




Page 6 of 17


38. In the Op-Amp circuit shown, assume that the diode current follows the equation  $I = I_s \exp (V/V_T)$ . For  $V_i = 2V$ ,  $V_0 = V_{01}$ , and for  $V_i = 4V$ ,  $V_0 = V_{02}$ . The relationship between  $V_{01}$  and  $V_{02}$  is:

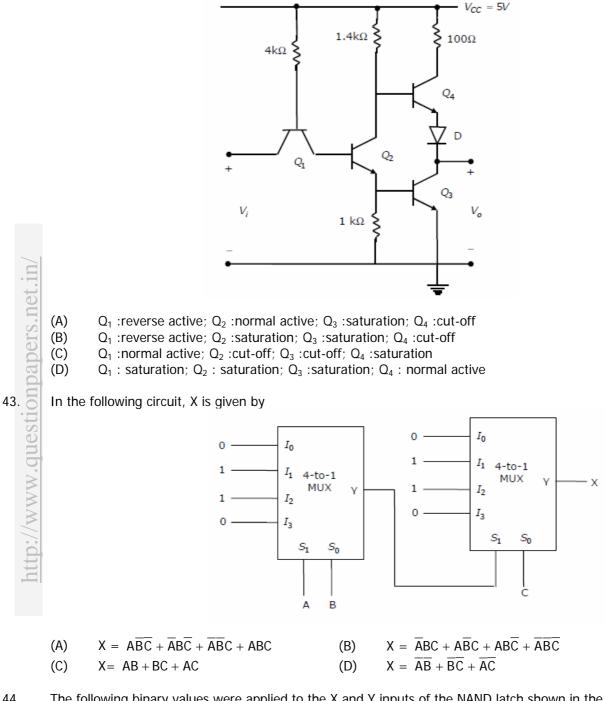


39. In the CMOS inverter circuit shown, if the transconductance parameters of the NMOS and PMOS transistors are  $k_n = k_p = \mu_n C_{ox}$   $\frac{W_n}{L_n} = \mu_p C_{ox} \frac{W_p}{L_n} = 40 \ \mu \text{ A/V}^2$  and their threshold voltages are  $V_{THM}$ 



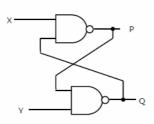
For the Zener diode shown in the figure, the Zener voltage at knee is 7V, the knee current is negligible and the Zener dynamic resistance is  $10\Omega$ . If the input voltage (V<sub>i</sub>) range is from 10 to 16V, the output voltage (V<sub>0</sub>) ranges from




| (A) | 7.00 to 7.29 V | (B) | 7.14 to 7.29 V |
|-----|----------------|-----|----------------|
| (C) | 7.14 to 7.43 V | (D) | 7.29 to 7.43 V |

40.

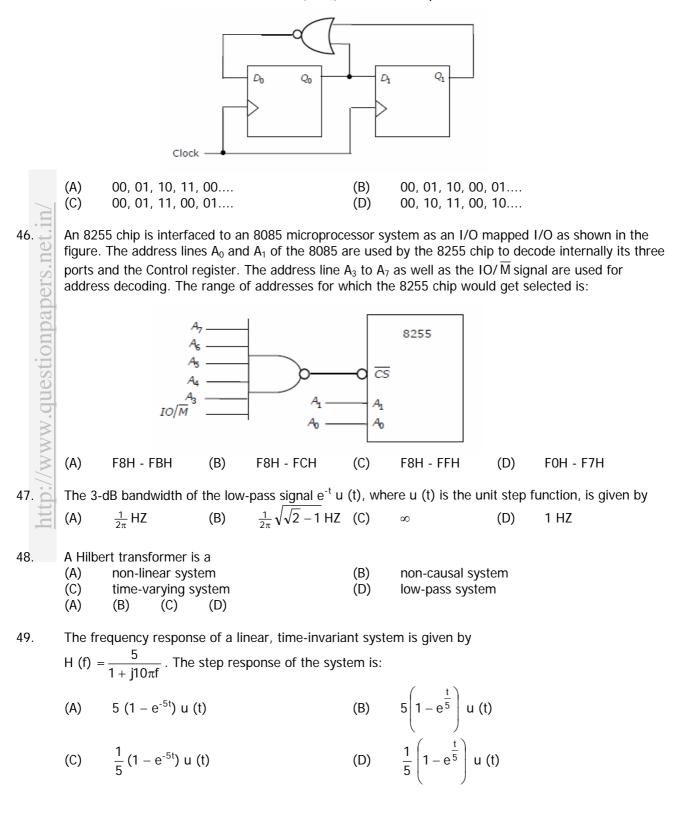
The Boolean expression  $y = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + A\overline{BCD}$  can be minimized to 41.  $y = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C} + \overline{A}\overline{C}D$ (A) (B)  $y = \overline{ABCD} + BC\overline{D} + A\overline{B}\overline{C}\overline{D} + AB\overline{C}D$ 


 $y = \overline{A}BC\overline{D} + \overline{B}\overline{C}D + A\overline{B}\overline{C}D$  $y = \overline{A}BC\overline{D} + \overline{B}\overline{C}D + AB\overline{C}\overline{D}$ (C) (D)

42. The circuit diagram of a standard TTL NOT gate is shown in the figure. When  $V_i = 2.5 V$ , the modes of operation of the transistors will be:



44. The following binary values were applied to the X and Y inputs of the NAND latch shown in the figure in the sequence indicated below:


$$X = 0, Y = 1;$$
  $X = 0, Y = 0;$   $X = 1, Y = 1.$ 



Page 8 of 17

| (A) | P = 1, Q = 0; | P = 1, Q = 0;    | P = 1, Q = 0 c | or $P = 0, Q = 1$ |
|-----|---------------|------------------|----------------|-------------------|
| (B) | P = 1, Q = 0; | P = 0, Q = 1; or | P = 0, Q = 1;  | P = 0, Q = 1      |
| (C) | P = 1, Q = 0; | P = 1, Q = 1;    | P = 1, Q = 0 ( | or $P = 0, Q = 1$ |
| (D) | P = 1, Q = 0; | P = 1, Q = 1;    |                | P = 1, Q = 1      |

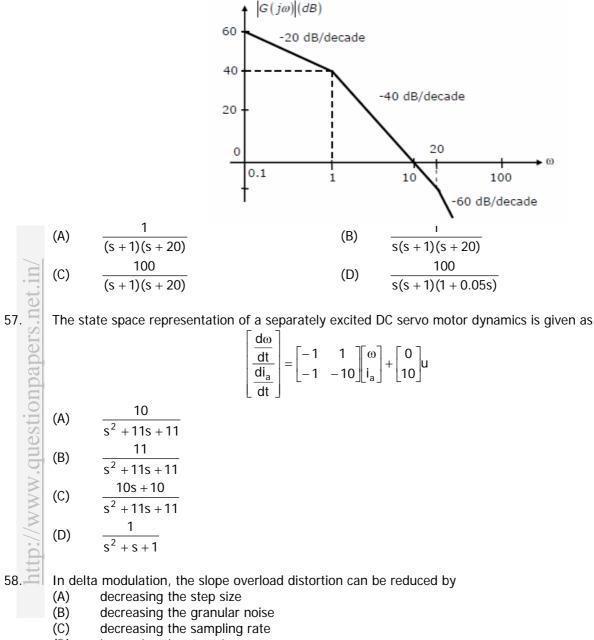
45. For the circuit shown, the counter state  $(Q_1Q_0)$  follows the sequence



50. A 5-point sequence [n] is given as x [-3] = 1, x[-2] = 1, x[-1] = 0, x[-0] = 5, x[1] = 1, Let X ( $e^{j\omega}$ ) denote the discrete-time Fourier transform of x [n]. The value of  $\omega \int X(e^{j\omega})d\omega$  is: (A) 5 (B) (C) (D) 10π 16π  $5 + j10\pi$ The z-transform X [z] of a sequence x [n] is given by X [z] =  $\frac{0.5}{1-2z^{-1}}$ . It is given that the region of 51. convergence of X [z] includes the unit circle. The value of x [0] is: (A) -0.5 (B) 0 (C) 0.25 (D) 0.5 52. A control system with a PD controller is shown in the figure. If the velocity error constant  $K_V = 1000$ and the damping ratio  $\zeta = 0.5$ , then the values of K<sub>P</sub> and K<sub>D</sub> are: 100  $K_P + K_D s$ s(s+10)tionpapers.net.in  $\begin{array}{l} K_{P} \,=\,\, 100, \, K_{D} \,=\! 0.9 \\ K_{P} \,=\,\, 10, \, K_{D} \,=\! 0.9 \end{array}$ (B) (D) (A)  $K_P = 100, K_D = 0.09$ (C)  $K_P = 10, K_D = 0.09$ 

The transfer function of a plant is T (s) =  $\frac{5}{(s+5)(s^2+s+1)}$ . The second-order approximation of T (s) 53. June Www.//:ott using dominant pole concept is:

| (A) | $\frac{1}{(s+5)(s+1)}$  | (B) | $\frac{5}{(s+5)(s+1)}$  |
|-----|-------------------------|-----|-------------------------|
| (C) | $\frac{5}{s^2 + s + 1}$ | (D) | $\frac{1}{s^2 + s + 1}$ |

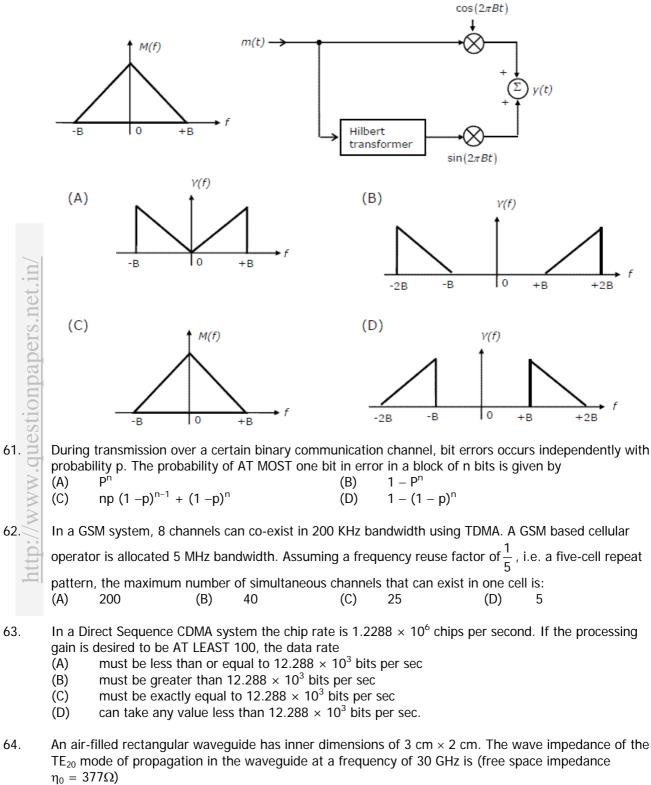

54.

The open-loop transfer function of a plant is given as G (s) =  $\frac{1}{s^2 - 1}$ . If the plant is operated in a unity feedback configuration, then the lead compensator that an stabilize this control system is:

| (A) | $\frac{10(s-1)}{s+2}$  | (B) | $\frac{10(s+4)}{s+2}$ |
|-----|------------------------|-----|-----------------------|
| (C) | $\frac{10(s+1)}{s+10}$ | (D) | $\frac{2(s+2)}{s+10}$ |

A unity feedback control system has an open-loop transfer function G (s) =  $\frac{K}{s(s^2 + 7s + 12)}$ . The gain 55. K for which s = -1 + j1 will lie on the root locus of this system is: (A) (B) 5.5 (C) 6.5 (D) 10

56. The asymptotic Bode plot of a transfer function is as shown in the figure. The transfer function G (s) corresponding to this Bode plot is:




(D) increasing the step size

59. The raised cosine pulse p (t) is used for zero ISI in digital communications. The expression for p (t) with unity roll-off factor is given by p (t) =  $\frac{\sin 4\pi W t}{4\pi W t (1 - 16W^2 t^2)}$ .

The value of p (t) at t  $\frac{1}{4W}$  is: (A) -0.5 (B) 0 (C) 0.5 (D)  $\infty$ 

60. In the following scheme, if the spectrum M (f) of m (t) is as shown, then the spectrum Y (f) of y (t) will be:



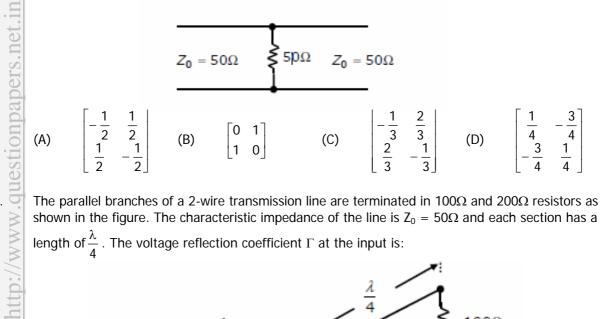
(A)  $308 \Omega$  (B)  $355 \Omega$  (C)  $400 \Omega$  (D)  $461 \Omega$ 

65. The H field (in A/m) of a plane wave propagating in free space is given by

$$\vec{H} = \hat{X} \frac{5\sqrt{3}}{\eta_0} \cos(\omega t - \beta z) + \hat{y} \frac{5}{\eta_0} \sin\left(\omega t - \beta z + \frac{\pi}{2}\right).$$

The time average power flow density in watts is:

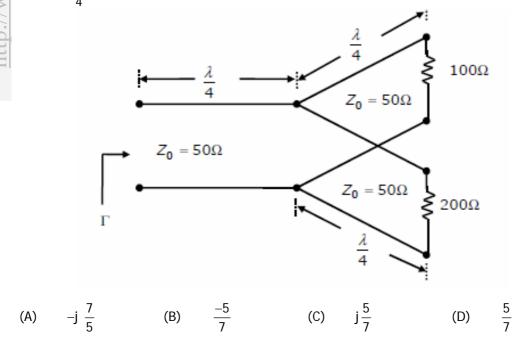
(A) 
$$\frac{\eta_0}{100}$$
 (B)  $\frac{100}{\eta_0}$  (C)  $50\eta_0^2$  (D)  $\frac{50}{\eta_0}$ 


The E field in rectangular waveguide of inner dimensions  $a \times b$  is given by 66.

$$\vec{E} = \frac{\omega \mu}{h^2} \left( \frac{\pi}{a} \right) H_0 \, \sin \left( \frac{2\pi x}{a} \right)^2 \, \sin(\omega t - \beta z) \hat{y} \; . \label{eq:eq:expansion}$$

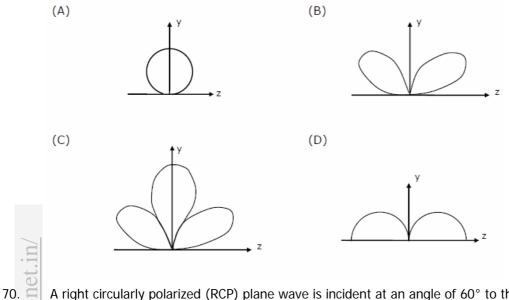
Where H<sub>0</sub> is a constant, and a and b are the dimensions along the x-axis and the y-axis respectively. The mode of propagation in the waveguide is:

(D) (A) TE<sub>20</sub> (C) TM<sub>20</sub> **TE**<sub>10</sub> (B)  $TM_{11}$ 

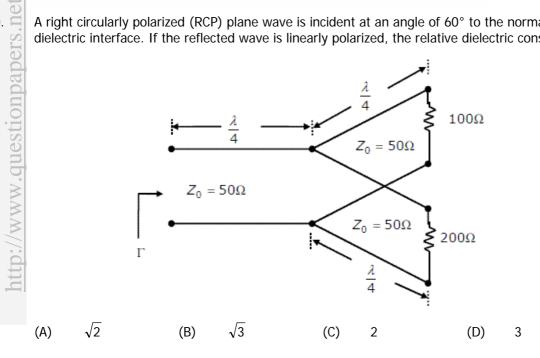

67. A load of 50 $\Omega$  is connected in shunt in a 2-wire transmission line of  $Z_0 = 50\Omega$  as shown in the figure. The 2-port scattering parameter matrix (S-matrix) of the shunt element is:



The parallel branches of a 2-wire transmission line are terminated in  $100\Omega$  and  $200\Omega$  resistors as shown in the figure. The characteristic impedance of the line is  $Z_0 = 50\Omega$  and each section has a


length of  $\frac{\lambda}{4}$ . The voltage reflection coefficient  $\Gamma$  at the input is:

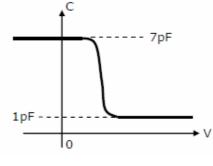
68.




Page 13 of 17

dipole is kept horizontally at a height of  $\frac{\lambda_0}{2}$  above a perfectly conducting infinite ground plane. A  $\frac{\lambda}{2}$ 69. The radiation pattern in the plane of the dipole ( $\vec{E}$  plane) looks approximately as




A right circularly polarized (RCP) plane wave is incident at an angle of 60° to the normal, on an airdielectric interface. If the reflected wave is linearly polarized, the relative dielectric constant  $\varepsilon_{r2}$  is:



#### **Common Data Questions**

#### Common Data for Questions 71, 72, 73:

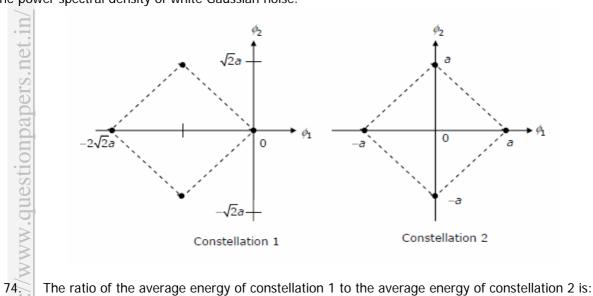
The figure shows the high-frequency capacitance-voltage (C-V) characteristics of a Metal/SiO<sub>2</sub>/silicon (MOS) capacitor having an area of  $1 \times 10^{-4}$  cm<sup>2</sup>. Assume that the permittivities ( $\epsilon_0 \epsilon_r$ ) of silicon and SiO<sub>2</sub> are  $1 \times 10^{-12}$ F/cm and  $3.5 \times 10^{-13}$  F/cm respectively.



Page 14 of 17

| 71. | The g<br>(A)                                                                                                            | ate oxide thickn<br>50 nm   | ess in the<br>(B) | e MOS capacitor<br>143 nm       | is:<br>(C) | 350 nm | (D) | 1 µm     |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|---------------------------------|------------|--------|-----|----------|
| 72. | The m<br>(A)                                                                                                            | naximum depleti<br>0.143 μm | on layer<br>(B)   | width in silicon is<br>0.857 μm | s<br>(C)   | 1 μm   | (D) | 1.143 μm |
| 73. | Consider the following statements about the C-V characteristics plot:<br>S1: The MOS capacitor has an n-type substrate, |                             |                   |                                 |            |        |     |          |

S2: If positive charges are introduced in the oxide, the C-V plot will shift to the left.


Then which of the following is true?

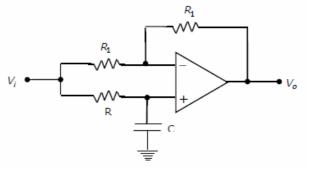
| (A) | Both S1 and S2 are true | (B) | S1 is true and S2 is false |
|-----|-------------------------|-----|----------------------------|
|     |                         |     |                            |

(C) S1 is false and S2 is true (D) Both S1 and S2 are false

#### Common Data for Questions 74, 75:

Two 4-ray signal constellations are shown. It is given that  $\phi_1$  and  $\phi_2$  constitute an orthonormal basis for the two constellations. Assume that the four symbols in both the constellations are equiprobable. Let  $\frac{N_0}{2}$  denote the power spectral density of white Gaussian noise.




- The ratio of the average energy of constellation 1 to the average energy of constellation 2 is: (A)  $4a^2$  (B) 4 (C) 2 (D) 8
- 75. If these constellations are used for digital communications over an AWGN channel, then which of the following statements is true?
  - (A) Probability of symbol error for Constellation 1 is lower
  - (B) Probability of symbol error for Constellation 1 is higher
  - (C) Probability of symbol error is equal for both the constellations
  - (D) The value of  $N_0$  will determine which of the two constellations has a lower probability of symbol error.

Page 15 of 17

## Linked Answer Questions: Q.76 to Q.85 Carry Two Marks Each

## Statement for Linked Answer Questions 76 & 77

Consider the Op-Amp circuit shown in the figure.



76. The transfer function 
$$V_{b}(s)/V_{i}(s)$$
 is:  
(A)  $\frac{1-sRC}{1+sRC}$  (B)  $\frac{1+sRC}{1-sRC}$  (C)  $\frac{1}{1-sRC}$  (D)  $\frac{1}{1+sRC}$   
77. If  $V_{i} V_{i}(s)$  for (d) and  $V_{0} = V_{2}$  sin (at +  $\phi$ ), then the minimum and maximum values of  $\phi$  (in radians) are respectively  
(A)  $\frac{-\pi}{2}$  and  $\frac{\pi}{2}$  (B)  $0$  and  $\frac{\pi}{2}$  (C)  $-\pi$  and  $0$  (D)  $\frac{-\pi}{2}$  and  $0$   
Statement for Linked Answer Questions 78 & 79:  
An 8085 assembly language program is given below:  
Line 1: MVI B, 0EH  
3: XRI 60H  
3: KRI 60H  
3: KRI 60H  
3: KRI 60H  
3: KRI 60H  
4: ADD B  
5: ANI 9EH  
6: CP 19BH  
7: STA 3010H  
8: HIT  
78. The contents of the accumulator just after execution of ADD instruction in line 4 will be  
(A) C3H (B) EAH (C) DCH (D) 69H  
79. CY = 0, Z = 0 (B) CY = 0, Z = 1 (C) CY = 1, Z = 0 (D) CY = 1, Z = 1  
80. The eigenvalue and eigenvector pairs  $(\lambda_{0}, v)$  for the system are  
(A)  $\left(-1, \left[\frac{1}{-1}\right]\right)$  and  $\left(-2, \left[\frac{1}{-2}\right]\right)$  (B)  $\left(-1, \left[\frac{1}{-1}\right]\right)$  and  $\left(2, \left[\frac{1}{-2}\right]\right)$   
71. The system matrix A is:  
(A)  $\left[0, \left(\frac{1}{-1}, \frac{1}{-1}\right]\right]$  (B)  $\left[\frac{1}{-1}, \frac{1}{-2}\right]$  (C)  $\left[2, \frac{1}{-1}, \frac{1}{-1}\right]$  (D)  $\left[0, \frac{1}{-2}, \frac{1}{-3}\right]$   
51. Statement for Linked Answer Questions 82 & 83:  
An input to a 6-level quantizer has the probability density function f (x) as shown in the figure.  
Defision boundaries of the quantizer has the probability density tunction f (x) as shown in the figure.  
42. The values of a and b are:  
(A)  $a = \frac{1}{6}$  and  $b = \frac{1}{12}$  (B)  $a = \frac{1}{5}$  and  $b = \frac{3}{40}$   
(C)  $a = \frac{1}{4}$  and  $b = \frac{1}{16}$  (D)  $a = \frac{1}{3}$  and  $b = \frac{1}{24}$ 


Page 16 of 17

83. Assuming that the reconstruction levels of the quantizer are the mid-points of the decision boundaries, the ratio of signal power to quantization noise power is:

(A) 
$$\frac{152}{9}$$
 (B)  $\frac{64}{3}$  (C)  $\frac{76}{3}$  (D) 28

### Statement for Linked Answer Questions 84 & 85:

In the Digital-to-Analog converter circuit shown in the figure below,  $V_R = 10 \text{ V}$  and  $R = 10 \text{k}\Omega$ .

