Ed.CET - 2014

Held on 30-05-2014

B

BUDDHI

Hall Ticket No.

(To be filled in by the candidate)

MATHEMATICS

INSTRUCTIONS TO CANDIDATES

- 1. Separate Optical Mark Reader (OMR) Answer Sheet is supplied follow along with this Question Paper Booklet.
- Use black / blue ball point pen only for filling in (i) the Hall Ticket Number in the space provided on the Question Paper Booklet (ii) filling entries of H.T.No. Question Paper Booklet S.No. and Booklet Code (A, B, C or D) on the OMR Sheet. Do not write your Hall Tiget Number anywhere else.
- Immediately on opening this Question Paper Booklat, please check whether all the 150 multiple-choice questions
 are printed in the Question Paper. If there is any select in the Question Paper Booklet or OMR answer sheet,
 please ask the invigilator for replacement.
- 4. Use of Calculators, Mathematical Tables, Log Books, Pagers, Cell Phones or any other electronic gadgets is strictly prohibited.
- 5. Use only an H.B. pencil to darken the appropriate circles corresponding to H.T. Number, Booklet Code, etc. on the OMR answer sheet.
- Darken the appropriate circles of 1.2.3 or 4 in the OMR sheet corresponding to the correct answer to the
 concerned Question number in the sheet only with an H.B. pencil. If you want to change the answer, erase the
 wrong answer and then darken the correct circle. Darkening of more than one circle against any question
 automatically gets your answer invalidated.
- 7. The script will not be valued if the candidate:
 - (i) writes the Hall Ticket No. in any other place of OMR answer sheet, except in the space provided for this purpose.
 - (ii) writes irrelevant matter, including the religious symbols, words, prayers or any communication whatsoever, in any place of the OMR answer sheet.
 - (iii) adopts any method of malpractice.
 - (iv) uses other than an H.B. pencil to darken the circles.
- Rough work should be done only in the space provided for this purpose in the Question Paper Booklet. No loose sheet of paper will be allowed into the Examination Hall.
- Once the candidate enters the Examination Hall, he / she shall not be permitted to leave the Hall till the end of the Examination.
- Ensure that the Invigilator puts his / her signature in the space provided on the Question Paper Booklet and the OMR Answer Sheet. Candidate should sign in the space provided on the OMR Answer Sheet.
- 11. Return the OMR Answer Sheet to the Invigilator before leaving the Examination Hall.
- 12. The candidate should write the Question Paper Booklet No., and sign in the space provided in the Nominal Rolls while ensuring the bio-data printed against his / her name is correct. If necessary the candidate may effect changes.
- In case of any discrepancy between English and Telugu Versions of the questions, English Version of the question shall be treated as final.

PART – A

GENERAL ENGLISH

(Marks : 25)

1.	The opposite meaning of the word assem	ble is			
	(1) disburse	(2) repel			
	(3) disperse	(4) litter			
2.	Choose the antonym of the word 'barren	(90)			
	(1) boisterous	(2) bashful			
	(3) fruitless	(4) fertile			
3.	I water the plants in my garden everyday	The underlined word is used as			
	(1) verb (2) noun	(3) adverb (4) pronoun			
4.	What is the active voice form of "All the food has been eaten."	250			
	(1) They have eaten all the food	(2) They are all the food			
	(3) They had eaten all the food	(4) We ate all the food			
5.	The Principal says, "The girl was letharg The Principal says that	ric," The indirect form of the above sentence is			
	(1) the girl is lethargic.	(2) the girl was lethargic.			
	(3) the girl has been lethargic.	(4) the girl had been lethargic.			
6.	Sheela wasn't a great singer.				
	The appropriate tag for the above statement is				
	(1) isn't it?	(2) didn't she?			
	(3) was she?	(4) wasn't she?			
7.	A "red letter day" means				
	(1) a day in severe summer	(2) something dangerous			
	(3) a day of great importance	(4) a day of great misfortune			

	Choose the appropriate verb f	from the given questions 8 to 10.	
8.	We nothing to ea	at since eight O' clock this morn	ing.
	(1) are having	(2) had	M.
	(3) have had	(4) were having	(V)
9.	If I you, I s	hould not accept that post.	
	(1) am (2) ain't	(3) aren't	(4) were
10.	Sam's cell phone	by the guard.	600
	(1) was stolen (2) was s		(4) steals
	Fill in the blanks choosing the	correct article(s) from the given.	If no article is required, choose 4.
11.	Robert gave one		honest boy.
	(1) an, a (2) a, an	(3) the, a	
12.	I am going to	hospital to visit a sick friend.	
	(1) the (2) a	(3) an	(4)
	Choose the correct preposition	n / prepositions to fill in the bla	inks in sentences 13 and 14.
13.			velopment. Do you agreeme?
	(1) on, over (2) of, on	(3) in, with	(4) from, an
14.	Do you dreamn	ight? Do you remember your dr	eams the morning?
	(1) in, at (2) at, in		(4) in, in
15.	Each word given below is speli	differently. Choose the rightly s	spelt word
	(1) adulteration (2) adalter	rotion (3) adultereition	(4) adeolterotion
	Pick out the most suitable word	l to complete sentences 16 and	17.
16.	One who can do anything for n	nonetary or material gain is calle	ed a / an
	(1) agnostic (2) merces	nary (3) pauper	(4) misogynist
17.	The committee's appeal to the p	people for money	little response.
	(1) provided	(2) gained	4.00
	(3) provoked	(A) avaled	

In the following questions (18-20) sentences have been divided into six parts. The first and last parts are numbered 1 and 6 and the remaining four parts are named P, Q, R and S. Rearrange the parts P, Q, R and S to form meaningful sentences.

- 18. (1) The court said there can be
 - P under anti-terror laws or normal criminal laws
 - Q no distinction between people convicted
 - R for commutation of death sentence
 - S on the grounds of unreasonable delay
 - (6) in deciding the mercy petition by the President.
 - (1) PQRS

(2) QPRS

(3) QRPS

(4) PRQS

- 19. (1) Earlier, Holi was taken
 - P games, however studies have
 - Q not only detrimental to the human body
 - R in the spirit of fun and
 - S indicated that these colours are
 - (6) but also for the soil and water.
 - (1) QPRS

(2) PQRS

(3) RPSQ ~

(4) SPQR

- 20. (1) A Japanese research institute said
 - P a revolutionary way to create stem cells
 - O was faulty, dealing a huge blow to
 - R should be quashed after claims that its data
 - S that a study which promised
 - (6) what was touted as a game changing discovery.
 - (1) SRPQ

(2) QPRS

(3) RPQS

(4) SPRQ

Read the following passage and answer the questions 21 to 25.

In Spring season, polar bear mothers emerge from the dens with three-month old cubs. The mother bear has fasted for as long as eight months but that does not stop the young from demanding fur access to her remaining reserves. If there are triplets, the most persistent stands to gain an extra mean and it may have the meal at the expense of others. The smallest of the little forfeits many meals to stronger siblings. Females are protective of their cubs but tend to ignore family rivalry over food. It years of photographing polar bears, I've only once seen the smallest of triplets survive till Autumn

- 21. The polar bear mother's sacrificing instinct lies in-
 - (1) Her emergence from the den with three month-old cubs.
 - (2) Her fasting for as long as eight months.
 - (3) Her rearing up multiple cubs with a protective instinct.
 - (4) Her giving full access to the cubs in spite of long fasting.
- 22. What does the mother bear do when the cubs fight for food?
 - (1) It protects the younger cubs.
 - (2) It ignores their rivalry.
 - (3) It gives full access to the cubs for food.
 - (4) It tries to gain an extra meal.
- 23. The 'family rivalry' refers to:
 - (1) The quarrel among the mothers of the cub family.
 - (2) The battle for survival among the cubs.
 - (3) The cubs' demand for food from the mother.
 - (4) The competition between the stronger and the weaker cubs.
- 24. Where is the notion of 'survival of the fittest' seen in the passage?
 - (1) In the hungry mother feeding the young cubs.
 - (2) In the smaller cubs giving up many meals for bigger ones.
 - (3) In the smallest of the cubs finding herself unequal in the race for food.
 - (4) In the stronger cubs sharing food with the weaker ones.
- 25. What is the rarest thing that the author has seen in his life?
 - (1) The smallest of triplets surviving till Autumn.
 - (2) The mother bear fasting for as long as eight months.
 - (3) Some having the meal at the expense of others.
 - (4) The smallest of the little ones forfeiting many meals.

PART - B

GENERAL KNOWLEDGE

(Marks: 25)

- 26. According to World Bank, the Indian GDP Development rate is ప్రపంచ బ్యాంకు ప్రకారం భారత దేశ జి.డి.పి. అభివృద్ధి రేటు
 - (1) 3.7 Percent

3.7 శాతము

(2) 4.7 Percent

4.7 శాతము

(3) 5.7 Percent

5.7 శాతము

(4) 6.7 Percent

6.7 శాతము

- 27. The World Cup Cricket Competitions 2019 will be held at 2019 స్థవంచ కప్ క్రికెట్ పోటీలు ఎక్కడ జరుగును?
 - (1) Sri Lanka

శ్రీలంక

(2) India

ಇಂಡಿಯಾ

(3) England

ఇంగ్లాండు

(4) West Indies

వెస్ట్ ఇండిస్

- 28. The First Woman Chairperson of State Bank of India is భారతీయ స్టేట్ బ్యాంకు మొదటి మహిళాధ్యక్షులు
 - (1) Chanda Kocher

చందా కొచ్చర్

(2) P.V. Sandhya

పి.వి. సంధ్య

(3) Tripurana Venkatarathnam

త్రిపురాన వెంకటరత్నం

(4) Arundathi Bhattacharya

అరుంధతి భట్టాచార్య 🗸

29. The present secretary of Telecom Regulatory Authority of India is భారత దేశ తంతి నియంత్రణ అధికార సంస్థ ప్రస్తుత కార్యదర్శి

(1) Sudheer Gupta

సుధీర్ గుప్త

(2) Aditya Joshi

ఆదిత్య జోషి

(3) S.V. Seshagiri Rao

యస్. వి. శేపగ్గిరి రావు

(4) Sushma Singh

సుష్మా సింగ్

వేద ప్రకాశ్

8 'Blue Revolution' refers to 'నీలి విప్లవ' మనగా (1) Agriculture (2) Space Research వ్యవసాయం అంతరిక్ష పరిశోధన (3) Fisheries (4) Animal Husbandry మత్స్యపరిశ్రమ పశు పోషణ The Chancellor of Central Universities is కేంద్ర విశ్వ విద్యాలయాల కులపతి (1) President of India (2) Prime Minister రాష్ట్రపతి ప్రధాన మంత్రి (3) Minister of HRD (4) Governor of the State రాష్ట్ర గవర్నరు HRD ಮಂಡಿ Which one of the following diseases usually spreads through air? కిందివానీలో ఏ వ్యాధి గాలి ద్వారా వ్యాపిస్తుంది? (1) Tuberculosis (2) AIDS క్షయ వ్యాధి ವಿಯಿಡ್ಸ್ (3) Plague (4) Cholera ್ಲೆಗು ವ್ಯಾಧಿ కాలరా వ్యాధి 'Bharatiya Mahila Bank' is located at 33. 'భారతీయ మహిళా బ్యాంకు' ఎక్కడుంది ? (1) Bengaluru (2) Mumbai బెంగళూరు (3) Chennai (4) New Delhi చెన్పై న్యూ ఢిల్లీ The Central Information Commissioner is 34. కేంద్ర సమాచార కమీపనర్ (1) Madabhushi Sreedhar (2) V.V. Vittal మాడభూషి,శ్రీధర్ వి.వి. విఠల్ (3) K.V. Thomas (4) Ved Prakash

కె.వి. థామస్

35.	The Chairman of 7th Pay Commission is				
	7 వ వేతన సంఘ అధ్యక్షుడు				
	(1) Justice Ashok Kumar Mehta	(2) Justice B.N. Srikrishna	1		
	జస్టీస్ అశోక్ కుమార్ మెహతా	జస్టీస్ బి.ఎన్. శ్రీకృష్ణ	67		
	(3) Justice R.N. Malhotra	(4) Bimal Jalan	(1)		
	జస్టీస్ ఆర్.ఎన్. మల్హ్మోత	బీవుల్ జలాన్	207		
36.	The "International Day of Disabled Person	" is observed on	~0		
	''అంతర్జాతీయ వికలాంగుల దినోత్సవాన్ని'' పాటించు	దినం	5702		
	(1) 3 rd December (2) 3 rd October	(3) 23 rd November (4)	23 rd December		
	డిసెంబర్ 3 అక్టోబరు 3	నవంబరు 23 😾	డిసెంబరు 23		
37.	The book 'Future Shock' is written by	(0)			
	'ఫ్యూచర్ షాక్' అనే గ్రంథాన్ని రచించినది	M			
	(1) A.P.J. Abdul Kalam	(2) Rodalph & Rodalph	<i>y</i>		
	ఎ.పి.జె. అబ్దుల్ కలాం	రొడాల్ఫ్ మరియు రొడాల్ఫ్			
	(3) Alwin Toffler	(4) Amruth Sen			
	ఆల్విన్ టోప్లర్	అమృత్ సేన్			
38.	The "National Knowledge Commission" was set up in the year				
	'జాతీయ విజ్ఞాన కమీపన్' ను స్థాపించిన సంవత్సరం				
	(1) 2007 (2) 2006	(3) 2004 (4)	2005		
39.	The 'National Food Security Bill' in India	was passed in the year			
	భారత దేశంలో 'జాతీయ ఆహార భద్రత బిల్లు' ను ఆమోదించిన సంవత్సరం				
	(1) 2014 (2) 2011	(3) 2012 (4)	2013		
40.	Which fruit is known as the 'King of the Fruits'?				
	ఏ ఫలం 'ఫలాల్లో రాజు'?				
	(1) Orange (2) Grape	(3) Mango (4)	Apple		
	ఆరంజ్ ద్రాక్ష	మామిడి	ఆఫిల్		
	S				
163					

TEACHING APTITUDE

- 41. The position of the teacher in teaching-learning process is బోధన–అభ్యసన ప్రక్రియలో ఉపాధ్యాయుని స్థానం
 - (1) a leader ఒక నాయకుడు
 - (2) a member ఒక సభ్యుడు
 - (3) a dictator ఒక నియంత
 - (4) a director ఒక దర్శకుడు
- 42. The prime objective of education is to make a man విద్య యొక్క ప్రధాన ఉద్దేశ్యము మనిపిని ఈ విధంగా చేయడం
 - a robot మరమనిషిగా
 - (2) a politician రాజకీయ నాయకుడుగా
 - (3) a money maker ధనార్జన పరుడుగా
 - (4) a complete man పరిపూర్ణ వ్యక్తిగా
- 43. A teacher can establish rapport with his pupils by way of ఉపాధ్యాయుడు విద్యార్థులతో సాన్నిహిత్యం పెంపొందించుటకై
 - (1) speaking lovely words. ప్రేమ పూర్వకంగా మాట్లాడాలి
 - (2) exhibiting his supremacy. తన ఆధిక్యతను ప్రదర్శించాలి
 - (3) exhibiting authority. అధికారం చలాయించాలి
 - (4) segregating pupils. విద్యార్ధులను విభజించాలి

- 44. What is the most effective way to reform the aggressive behaviour of a student? దురుసు స్వభావము కలిగిన విద్యార్ధిలో మార్పు తీసుకురావడానికి అత్యంత ఉపయుక్తమైన మార్గమేది?
 - (1) He should be kept in isolation.
 అట్టి విద్యార్థిని ఏకాంతంగా ఉంచుట
 - (2) He should be punished severely. అట్టి విద్యార్థిని కఠినంగా శిక్షించుట
 - (3) Reasons for such behaviour should be identified. అట్టి ప్రవర్తనకు గల కారణములను గుర్తించుట
 - (4) He should be ignored. అట్టి విద్యార్థిని విస్మరించుట
- 45. If a student avoids meeting others, then ఒక విద్యార్థి యితరులతో కలసిమెలసి ఉండకుంటే
 - (1) He should be left alone. అతడ్ని ఒంటరిగా వదిలెయ్యాలి
 - (2) He should be involved in group activities. అతడ్ని సామూహిక కార్యకమాలలో పాల్గొనేటట్టు చేయాలి
 - (3) He should be compelled to meet his classmates. అతడ్ని తోటి విద్యార్థులతో కలవమని బలవంతంచేయాలి
 - (4) He should be guided to mingle with others. ಅతడ్ని యితరులతో కలసిమెలసి ఉండేటట్టు మార్గ నిర్దేశనం చేయాలి. \lor
- 46. In a class room, technology for a teacher would be a తరగతి గదిలో ఉపాధ్యాయునికి సాంకేతిక జ్ఞానం
 - (1) Master నియంత్రంచే శక్తి
 - (3) Guide మార్గదర్శి

- (2) Sub-servient లోబడి వుండే సహాయకారి
- (4) Companion సహచరి

12 Learners should not be encouraged to అభ్యాసకులను దీనికై ప్రోత్సహించరాదు (1) ask questions both inside and outside the class. తరగతి లోపల, బయట ప్రశ్నలు అడగమని (2) actively interact with other learners in group work. సామూహిక కార్యకమాలలో ఇతర అభ్యాసకులతో చురుకుగా పాల్గొనమని (3) memorise all answers which the teacher may ask. ఉపాధ్యాయుడు అడిగే అన్ని సమాధానాలను బట్టీ పట్నడాన్ని (4) participate in as many curricular activities as possible. సాధ్యమైనన్ని పాఠ్యాంశ కార్యక్రమాలలో పాల్గొనమని Teaching is 48. బోధన (1) an art (2) a science ఒక కళ ఒక శాస్త్రము (3) art and science (4) neither art nor science కళ మరియు శాస్త్రము కళగాని శాస్త్రముగానికాదు Quality in school education is possible only with a teacher who is పాఠశాల విద్యలో గుణాత్మకతను సాధించడానికై ఉపాధ్యాయుడు ———— అయి ఉండవలెను. (2) Trained (1) Experienced (3) Qualified (4) Committed అనుభవజ్జుడు సుశిక్షతుడు అర్ముడు నిబద్దుడు To make the teacher pro-active in his professional activities, he should be ఉపాధ్యాయుడు తన వృత్తిపరమైన కార్యక్రమాలో పురోగమించుటకై

- - (1) Provided place of work of his choice. తనకిష్టమైన స్టదేశంలో పనిచేసే అవకాశం కర్పించుట
 - (2) Given frequent promotions. పదోన్నతులు తరచుగా కర్పించుట
 - (3) Provided fringe benefits. వేతనంకాక అదనపు ప్రయోజనాలు కర్పించుట
 - (4) Given freedom in selecting the content and methods of teaching. పాఠ్యాంశములను, బోధనా పద్ధతుల ఎంపికలో స్వేచ్చ కల్గించుట 🗡

PART - C

MATHEMATICS

(Marks: 100)

- 51. If $x^2 + ax + 10 = 0$ and $x^2 + bx 10 = 0$ have a common root, then $a^2 b^2 = 0$ $x^2 + ax + 10 = 0$ మరియు $x^2 + bx - 10 = 0$ లు ఒక ఉమ్మడి మూలాన్ని కలిగి ఉంటే, అప్పుడు $a^2 - b^2 =$
 - (1) 10

- (2) 20
- (3) 30
- 52. If α , β , γ are the roots of the equation $x^3 6x^2 + 11x 6 = 0$, then the equation whose roots are $\alpha + 1$, $\beta + 1$ and $\gamma + 1$, is $x^3-6x^2+11x-6=0$ సమీకరణానికి lpha , eta , γ లు మూలాలయితే, lpha+1 , eta+1 మరియు $\gamma+1$ లను మూలాలుగా గలిగిన సమీకరణం
 - (1) $x^3 + 6x^2 + 11x + 6 = 0$

(2) $x^3 - 9x^2 + 26x - 24 = 0$

(3) $x^3 + 6x^2 - 11x + 6 = 0$

- $(4) x^3 + 9x^2 + 26x + 24 = 0$
- 53. If a and b are non zero distinct roots of $x^2 + ax + b = 0$, then the least value of $x^2 + ax + b$ is a,b లు $x^2+ax+b=0$ యొక్క శూన్బేతర విభిన్న మూలాలయితే, అప్పుడు x^2+ax+b యొక్క కనిష్ఠ విలువ

- (2) $\frac{-9}{4}$ (3) 1

- 54. If $\sin \alpha$, $\cos \alpha$ are the roots of the equation $px^2 + qx + r = 0$, then $px^2+qx+r=0$ సమీకరణం యొక్క మూలములు $\sin lpha$, $\cos lpha$ అయితే, అప్పుడు

- (1) $p^2 + q^2 = 2pr$ (2) $p^2 q^2 = 2pr$ (3) $p^2 + q^2 = -2pr$ (4) $p^2 q^2 = -2pr$
- 55. The number of real roots of the equation $x^3 + 2x^2 + x + 2 = 0$ is $x^3 + 2x^2 + x + 2 = 0$ సమీకరణం యొక్క వాస్తవ మూలాల సంఖ్య
 - (1) 0

- (4) 3
- 56. For $x \in \mathbb{R}$, the maximum value of $f(x) = 4x 5x^2 1$ is $x \in \mathbb{R}$ కి, $f(x) = 4x - 5x^2 - 1$ యొక్క గరిష్ఠ విలువ

- (2) $\frac{-1}{4}$
- (3) $\frac{-1}{5}$

57.	The digit in the 10's place	e of the number $\sum_{m=1}^{223} m!$	is	11. 22.5	7	
	$\sum_{m=1}^{225} m!$ అనే సంఖ్య యొక్క పద $m=1$	ుల స్థానం లోని అంకె			(2
	(1) 1	(2) 8	(3)	4 V	(4)	6
58.	The remainder we get wh	nen 5 ⁵⁵ is divided by 6	is		0	7
	5^{5^5} ని 6 చే భాగిస్తే వచ్చే శేషం			Gor)	
	(1) 1	(2) 3	(3)	5	(4)	0
59.	The number of solutions $[0, 8]$ అంతరంలో, $4x \equiv 3$ (m	and the same of th	_	erval [0, 8] is	O. T.	
	(1) 0	(2) 1	(3)	47	(4)	3
60.	If ϕ is the Euler-totient for ϕ అనేది ఆయిలర్–బోషెంట్ డ్ర	~~~	/			
	(1) 2	(2) 32	(3)	64	(4)	128
61.	The largest positive integ	ger n such that 30^n divid	des (2	249)! is		
	(249)! ਹੈ, 30^n ಭਾಗಿಂచగలಿಗೆ t					
	(1) 8	(2) 59	(3)	41	(4)	16
62.	The sum of all positive i	ntegral divisors of 3600) is			
	3600 యొక్క అన్ని ధన పూర్హా	ంక భాజకాల మొత్తం	V			
	(1) 7299	(2) 10801		20799		12493
63.	If α , β are the values of సమీకరణం $4^x - 3 \cdot 2^{x+3} + 1$	x satisfying the equation $28 = 0$ බ හරුණුඩු හරිඩ් x ම	n, 4 ^x విలువ	$-3.2^{x+3} + 128 =$ ဃ α , β ಅಯಿತೆ α +	0 , th $\beta =$	en $\alpha + \beta =$
A	(1) 4	(2) 8	(3)	7	(4)	16
1	7			347 13		Tage Was

64. A particular integral of the equation
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \cos x$$
 is
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 4y = e^x \cos x$$
 సమీకరణం యొక్క (పల్యేక సమాకలని

(1)
$$\frac{e^x \cos x}{2}$$

$$(2) \quad \frac{e^x \sin x}{2}$$

$$(3) e^x (\sin x + \cos x)$$

$$(4) \quad \frac{e^{-x}\cos x}{2}$$

65. One solution of
$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
 is

$$\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$$
 యొక్క ఒక సాధనము

$$(1) xy = c$$

(2)
$$x^2 + y^2 = c$$
 (3) $\frac{x}{y} = c$

(3)
$$\frac{x}{v} = c$$

$$(4) \quad e^{x-y} = c$$

c is an arbitrary constant

$$c$$
 ఒక యాదృచ్ఛిక స్థిరరాశి

66. A particular integral of
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x}$$
 is

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{2x}$$
 యొక్క ప్రత్యేక సమాకలని

(1)
$$e^{2x}$$

(2)
$$-e^{2x}$$

(3)
$$e^{-2x}$$

$$(4) -x e^{2x}$$

67. The orthogonal trajectories of the family of rectangular hyperbolas $xy = c^2$ where c is a parameter,

c ఒక పరామితిగా $xy=c^2$ అనే లంబ ఆతి పరావలయాల కుటుంబం యొక్క లంబ సంఛేదములు (2) $x^2 - y^2 = c$ (3) xy = c

(1)
$$x^2 + y^2 = c$$

(2)
$$x^2 - y^2 = a$$

$$(3) xy = c$$

(4)
$$y^2 = 4 \text{ cx}$$

c is a parameter

c ఒక పరామితి

68. A solution of the differential equation $p = \cos(y - xp)$, where $p = \frac{dy}{dx}$ is $p = \frac{dy}{dx}$ అయినప్పుడు, అవకలన సమీకరణం $p = \cos(y - xp)$ యొక్క ఒక సాధనము

(1)
$$y = \frac{c}{x} + \cos^{-1} c$$
 (2) $y = cx$

$$(2) \quad y = cx$$

(3)
$$y = cx + cos^{-1} c$$
 (4) $y = e^x + c$

c is an arbitrary constant

c ఒక యాదృచ్ఛిక స్థిరరాశి

69. An integrating factor of
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$$
 is

$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$$
 యొక్క ఒక సమాకలన గుణకం

(1)
$$e^{2\sqrt{x}}$$

(2)
$$e^{-2\sqrt{x}}$$

(3)
$$e^{\sqrt{x}}$$

(4)
$$e^{-\sqrt{x}}$$

70. The order and degree of the differential equation
$$\left(5 + \frac{d^2y}{dx^2}\right)^{\frac{2}{3}} + \frac{dy}{dx} = x$$
 are, respectively

అవకలన సమీకరణం $\left(5+\frac{d^2y}{dx^2}\right)^{2/3}+\frac{dy}{dx}=x$ యొక్క పరిమాణము, తరగతి (ఘాతము) లు వరుసగా

71. The general solution of
$$\frac{dy}{dx} = \cos(x+y)$$
 is
$$\frac{dy}{dx} = \cos(x+y)$$
 యొక్క సాధారణ సాధన

(1)
$$x = \tan\left(\frac{x+y}{2}\right) + c$$

$$(2) \quad y = \tan\left(\frac{x+y}{2}\right) + c$$

(3)
$$x = \tan(x + y) + c$$

(4)
$$y = \tan(x + y) + c$$

c is an arbitrary constant c ఒక యాదృచ్చిక స్థిర రాశి

72. The general solution of
$$\frac{ydx - xdy}{y^2} = 0$$
 is
$$\frac{ydx - xdy}{y^2} = 0$$
 యొక్క సాధారణ సాధన

(1)
$$xy = \text{constant}$$

 $xy = స్థిర రాశి$

(2)
$$x = (constant) y$$

 $x = ($ ීර රුම) y

(3)
$$x^2 + y^2 = \text{constant}$$

(4)
$$x - y = \text{constant}$$

 $x - y =$ ශ්රගම

$$x^2 + y^2 =$$
స్టిర రాశి

73. The range of
$$f(x) = 3\sin\left(2x - \frac{2\pi}{3}\right) + 8$$
 $(x \in \mathbb{R})$ is

$$f(x) = 3sin\left(2x - \frac{2\pi}{3}\right) + 8 \quad (x \in \mathbb{R})$$
 యొక్క వ్యాప్తి

74. If
$$f: \mathbb{R} \to \mathbb{R}$$
 is defined by $f(x) = x^2 + 1$ then $f^{-1}[\{-3\}] =$

$$f(x) = x^2 + 1$$
 గా $f: \mathbf{R} \to \mathbf{R}$ నిర్వచితమైతే, అప్పుడు $f^{-1}[\{-3\}] =$

(4)
$$\phi$$
, the empty set

75. The complementary function of the equation
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = x + e^x \cos x$$
 is

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = x + e^x \cos x$$
 సమీకరణం యొక్క పూరక ప్రమేయం

$$(1) \quad c_1 \cos x + c_2 \sin x$$

(2)
$$e^x (c_1 \cos x + c_2 \sin x)$$

(3)
$$e^{-x} (c_1 \cos x + c_2 \sin x)$$

(4)
$$(x + e^x) (c_1 \cos x + c_2 \sin x)$$

c1, c2 are arbitrary constants

$$c_1$$
 , c_2 లు యాద్పచ్చిక స్థిరరాశులు.

.76. If
$$y \sqrt{1-x^2} dy + x\sqrt{1-y^2} dx = 0$$
, then

$$y \sqrt{1-x^2} dy + x\sqrt{1-y^2} dx = 0$$
 అయితే, అప్పుడు

(1)
$$\sqrt{1-y^2} + \sqrt{1-x^2} = c$$

$$(2) \quad \frac{1 - y^2}{1 - x^2} = c$$

(3)
$$xy \sqrt{1-x^2} = c$$

(4)
$$\frac{1}{\sqrt{1-x^2} - \sqrt{1-y^2}} = c$$

c is an arbitrary constant

$$c$$
 ఒక యాద్పచ్చిక స్థిరరాశి.

77. $xy = ae^x + be^{-x}$, where a and b are arbitrary constants, is a solution of the differential equation a,b యాదృచ్చిక చలరాశులయితే, $xy=ae^x+be^{-x}$ సాధన అయ్యే అవకలన సమీకరణం

(1)
$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = xy$$
 (2) $x\frac{d^2y}{dx^2} + \frac{dy}{dx} = y$ (3) $\frac{d^2y}{dx^2} + y = 0$ (4) $\frac{d^2y}{dx^2} + y = xy$

$$(2) \quad x\frac{d^2y}{dx^2} + \frac{dy}{dx} = y$$

(3)
$$\frac{d^2y}{dx^2} + y = 0$$

$$(4) \quad \frac{d^2y}{dx^2} + y = xy$$

78.
$$\lim_{n \to \infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2} \right] =$$

- 79. Let $f(x) = 2x^2 7x + 10$ be defined on [2, 5]. If $\frac{f(5) f(2)}{3} = f'(\xi)$, then $\xi = \frac{1}{3}$
 - [2,5] పై $f(x)=2x^2-7x+10$ గా నిర్వచితమైనది అనుకొందాం. $\frac{f(5)-f(2)}{3}=f'(\xi)$ అయితే, అప్పుడు క్ర

- (2) $\frac{7}{2}$
- (3) 0
- 80. The function $f(x) = x^3 6x^2 36x + 7$ is an increasing function in x, if x belongs to $f(x) = x^3 - 6x^2 - 36x + 7$ స్థమేయం, x లో ఆరోహణ స్థమేయం కావడానికి, x దీనికి చెందాలి.
 - (1) (-2, 0)
- (2) (0, 6) (3) $(-\infty, 6)$
- (4) $(-\infty, -2) \cup (6, \infty)$
- 81. If the function $f(x) = \frac{e^x e}{x 1}$, for $x \ne 1$, is to be continuous at x = 1, then f(1) =
 - $x \neq 1$ కి, $f(x) = \frac{e^x e}{x 1}$ అనే ప్రమేయం x = 1 వద్ద అవిచ్చిన్నం కావాలంటే, $f(1) = x \neq 1$

- 82. $\int_{-1}^{1} |x| \, dx =$

- (3) 2
- (4) -1

- 83. The supremum of the set $\left\{ \frac{1}{n} + \frac{1}{2^n} / n \in \mathbb{N} \right\}$ is
 - $\left\{\frac{1}{n} + \frac{1}{2^n} / n \in N\right\}$ సమీతి యొక్క కనిష్ఠ ఎగువ హద్దు

- (1) 1 (2) $\frac{1}{2}$ (3) $\frac{3}{2}$ (4) 2

84. The infimum of the set $A = \left\{ 1 + \frac{(-1)^n}{n} / n \in \mathbb{N} \right\}$ is

$$\mathbf{A} = \left\{1 + \frac{\left(-1\right)^n}{n} \middle/ n \in N \right\}$$
 సమీతి యొక్క గరిష్ఠ దిగువ హద్దు

- (1) 0 (2) 1

(3) -1

- 85. The sequence $\left\{\frac{(-1)^n}{n}\right\}$ is $\left\{\frac{(-1)^n}{n}\right\}$ అనుక్రమము
 - (1) increasing sequence ఆరోహణ అనుక్రమము
 - (3) unbounded అపరిబద్ధము

- (2) decreasing sequence అవరోహణ అనుక్రమము
- (4) bounded పరిబద్ధము

- 86. $\lim_{x \to 2} \frac{2^{x+2} 16}{4^x 16} =$
 - (1) 2

- (3) 4

87. Let $f: [-1, 1] \rightarrow \mathbf{R}$ be defined by

$$f(x) = 2 \text{ when } x \neq 0$$

$$= 0 \text{ when } x = 0;$$
then
$$\int_{-1}^{1} f(x)dx = 0$$

$$f(x) = 2, x \neq 0$$
 అయినప్పుడు
= 0, $x = 0$ అయినప్పుడు;

 $r f : [-1, 1] \to R$ నిర్వచితమైనది అనుకొందాం. అప్పుడు $\int_{-1}^{1} f(x) dx =$

- (2) 1
- (3) 4
- (4) 2

- 88. The centroid of the triangle with vertices, (7, -4, 7), (1, -6, 10) and (5, -1, 1) is (7, -4, 7), (1, -6, 10) మరియు (5, -1, 1) లను శీర్వాలుగా గలిగిన త్రిభుజ కేంద్ర భాసము
 - (1) $\left(\frac{13}{3}, \frac{-11}{3}, 6\right)$ (2) (0, 0, 0) (3) (1, 1, 1)

- 89. An equation of a tangent plane to the sphere $x^2 + y^2 + z^2 4x + 2y 6z + 5 = 0$ which is parallel to the plane 2x + 2y - z = 0 is 2x + 2y - z = 0 తలానికి సమాంతరంగా ఉండే $x^2 + y^2 + z^2 - 4x + 2y - 6z + 5 = 0$ అనే గోళానికి ఒక స్పర్భీయ తలం యొక్క సమీకరణం
 - (1) 2x + 2y z 8 = 0

(2) x + y - z = 4

(3) 2x + 2y - z + 13 = 0

- (4) 2x + 2y z + 15 = 0
- 90. If the radius of the sphere $x^2 + y^2 + z^2 + 6x 8y \lambda = 0$, is 6, then $\lambda =$ $x^2 + y^2 + z^2 + 6x - 8y - \lambda = 0$ గోళం యొక్క వ్యాసార్థం 6 అయితే, అప్పుడు $\lambda =$
 - (1) 14 \
- (2) 36

- (4) 61
- 91. The equation of the sphere with (1, 2, 3) and (2, 3, 4) as the ends of a diameter is (1,2,3) మరియు (2,3,4) లను ఒక వ్యాసం కొనలుగా గలిగిన గోళం సమీకరణం
 - (1) $x^2 + y^2 + z^2 x 2y 3z + 20 = 0$ (2) $x^2 + y^2 + z^2 3x 5y 7z + 20 = 0$
 - (3) $x^2 + y^2 + z^2 3x 5y 7z 20 = 0$ (4) $x^2 + y^2 + z^2 2x 3y 4z + 20 = 0$

- 92. $\frac{d}{dx} (\tan^{-1} (\sec x + \tan x)) =$

- (2) $\sec x + \tan x$
- (4) 2

- 93. $\lim_{x \to 0} \frac{x \sin x}{3}$

- 94. If P (-1, 0, 7), Q (3, 2, x) and R (5, 3, -2) are collinear, then x = -2P(-1, 0, 7), Q(3, 2, x) మరియు R(5, 3, -2) లు సరేఖీయమైతే, అప్పుడు x =
 - (1) 5

(2) 1

- (3) $\frac{5}{2}$
- 95. The equation of the plane through the point (4, 0, 1) and parallel to the plane 4x + 3y 12z + 8 = 0 is (4,0,1) బిందువు గుండా పోతూ, 4x + 3y - 12z + 8 = 0 తలానికి సమాంతరంగా ఉండే తలం సమీకరణం
 - (1) 4x + 3y 12z + 4 = 0

- (2) 4x + 3y 12z 4 = 0
- (3) 4x + 3y 12z 1 = 0

- (4) 4x + 3y + 12z + 4 = 0
- 96. The radius of the circle $x^2 + y^2 + z^2 + x + y + z 4 = 0$, x + y + z = 0, is $x^2 + y^2 + z^2 + x + y + z - 4 = 0$, x + y + z = 0 అనే వృత్త వ్యాసార్థం
 - (1) 4

- (2) 2
- (3) 19
- (4) 1
- 97. If the plane $x + y + z = k \sqrt{3}$ touches the sphere $x^2 + y^2 + z^2 2x 2y 2z 6 = 0$, then $k = 2 + 2k \sqrt{3}$ x+y+z=k $\sqrt{3}$ అనే తలం, $x^2+y^2+z^2-2x-2y-2z-6=0$ అనే గోళాన్ని తాకుతుంటే, అప్పుడు k విలువ
 - $(1) \sqrt{3}$
- (2) 3 (3) $\sqrt{3} \pm 3$ (4) ± 2
- 98. The equation of the line passing through (3, 1, 2) and equally inclined to the coordinate axes are (3, 1, 2) గుండా పోతూ, నిరూపకాక్షాలకు సమానంగా వాలి ఉన్న సరళ రేఖ యొక్క సమీకరణాలు
 - (1) $\frac{x-3}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

(2) $\frac{x-3}{2} = \frac{y-1}{1} = \frac{z-2}{2}$

(3) $\frac{x-1}{1} = \frac{y-3}{2} = \frac{z-2}{3}$

- (4) $\frac{x-3}{1} = \frac{y-1}{1} = \frac{z-2}{1}$
- 99. The lines x = az + b, y = cz + d and $x = a_1 z + b_1$; $y = c_1 z + d_1$ are perpendicular if x=az+b , y=cz+d మరియు $x=a_1z+b_1$; $y=c_1z+d_1$ సరళ రేఖలు లంబంగా ఉండాలంటే
 - (1) $aa_1 + bb_1 + cc_1 = dd_1$

(2) $aa_1 + cc_1 + 1 = 0$

(3) $aa_1 + bb_1 + 1 = 0$

(4) $aa_1 + dd_1 + 1 = 0$

- 100. If A and B are non zero matrices such that rank A = l and rank B = m, then ಕ್ ಟಿ $\mathbf{A}=l$ ಮರಿಯು ಕ್ ಟಿ $\mathbf{B}=m$ ಅಮ್ಯೇಟಟ್ಲುಗ್ \mathbf{A} ಮರಿಯು \mathbf{B} ಲು ಸಾನೈತರ ಮ್ರಾಡಿಕಲಯಿತೆ, ಅప్పುడು
 - (1) $\operatorname{rank}[AB] = l + m$ [AB] కోటి = l + m

- (2) rank [AB] = $l \cdot m$ [AB] §්ඩ් = $l \cdot m$
- (3) rank [AB] = maximum of l, m[AB] కోటి = l, m లలో గరిష్ట
- (4) rank [AB] \leq minimum of l, m[AB] కోటి ≤ l, m లలో కనిష్ఠ
- 101. If $A = \frac{1}{3} \begin{vmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{vmatrix}$ is an orthogonal matrix, then $a^2 + b^2 + e^2 = 1$

$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{bmatrix}$$
 ఒక లంబమాత్రిక అయితే, అప్పుడు $a^2 + b^2 + c^2 =$

(1) 6

- (2) 9
- (4) 19
- 102. The magnitude of the shortest distance between the lines $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ is

 $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$ మరియు $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ సరళ రేఖల మధ్య నుండే కనిష్ట దూరం యొక్క పరిమాణం

- (1) $\frac{1}{\sqrt{3}}$

- (3) $\sqrt{3}$
- 103. The equation of the plane through the points (1, 0, 0); (0, 2, 0) and (0, 0, 3) is (1,0,0),(0,2,0),(0,0,3) బిందువులగుండా పోయే తలం సమీకరణం

- (1) x + y + z = 1 (2) 6x + 3y + 2z = 6 (3) x + 2y + 3z = 1 (4) 3x + 2y + 2z = 6
- 104. A point on the line of intersection of the planes x + y + z + 1 = 0 and 4x + y 2z + 2 = 0 is x+y+z+1=0 మరియు 4x+y-2z+2=0 తలాల ఛేదన రేఖపైనున్న ఒక బిందువు
- (1) $\left(0, \frac{-4}{3}, \frac{1}{3}\right)$ (2) (1, -2, 0) (3) $\left(0, \frac{-4}{3}, \frac{-1}{3}\right)$ (4) (1, -2, 1)

105. The rank of the matrix
$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
 is

$$A = \begin{bmatrix} 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
 మాత్రిక యొక్క కోటి

- (1) 3
- (2) 2
- (3) 1

106. If
$$A = \begin{bmatrix} a & a' & a'' \\ b & b' & b'' \\ 3a & 3a' & 3a'' \end{bmatrix}$$
, then $|A| =$

$$A = \begin{bmatrix} a & a' & a'' \\ b & b' & b'' \end{bmatrix}$$
 అయితే, అప్పుడు $|A| = 3a' \cdot 3a''$

- (1) 3aa' a" (2) 3

107. If two of the eigen values of the matrix
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
 are 3 and 15, then its third eigen value is

మాత్రిక $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ యొక్క రెండు ఐగన్ విలువలు 3 మరియు 15 అయితే, దాని మూడవ ఐగన్ విలువ

(1) 0

- (4) 12 ~
- 108. If a matrix A is both symmetric and skew-symmetric, then A అనే ఒక మాత్రిక సౌష్టవము మరియు అసౌష్టవము అయితే, అప్పుడు
 - (1) A is a diagonal matrix A ఒక వికర్ల మాత్రిక
 - (3) A is an orthogonal matrix A ఒక లంబ మాత్రిక

- (2) A is a null matrix A ఒక శూన్య మాత్రిక
- (4) A is an idempotent matrix A ఒక సమక్షయ మాత్రిక

109.	The number of distinct eigen values of a unit matrix of order $n > 2$ is
	పరిమాణము $n>2$ గా గలిగిన ఒక యూనిట్ మాత్రిక యొక్క విభిన్న లాక్షణిక విలువల సంఖ్య
	(1) 1 (2) $n-2$ (3) $n-1$ (4) n
110.	Which one of the following statements is <i>True</i> ? క్రింది ప్రవచనాలలో ఏది సత్యము?
	(I) The eigen vectors corresponding to the repeated eigen values of a matrix are linearly independent
	ని కైంక్ సువడానుత్త జాకణిక (ఐగన్) విలువలకి అనుగుణమయ్య లాక్షణక నిద్యాలు ఎక్కుల రెట్వలలేకు
	(II) If A is any square matrix, then $ A^2 - \lambda^2 I = 0$ is called the characteristic equation of A.
	A ఏగైన చత్తుర్మన్ల మాత్రిక అయితే, $ A^2 - \lambda^2 I = 0$ ని A యొక్క లోక్షణక నిమికింగం తెలికి
	(III) If X_i is an eigen vector corresponding to an eigen value λ_i , then $C + X_i$ is also an eigen vector
	where C is an arbitrary constant. C ఒక యాద్భచ్చిక స్థిరరాశి అయినప్పుడు, ఒక లాక్షణిక విలువ λ_i కి అనుగుణమయ్యే ఒక లాక్షణిక సదేశ X_i అయి
	ఆస్పుడు $C+X_i$ కూడా ఒక లాక్షణికి సదేశి అవుతుంది.
	(IV) The eigen vector corresponding to an eigen value of a matrix is not unique.
	(IV) The eigen vector corresponding α
	(1) I (2) II (3) III (4) IV
	A 4 VY

111. The value of λ for which the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8 and $2x + 3y + \lambda z = 8$ have no solution, is λ యొక్క ఈ విలువకు, 2x + 3y + 5z = 9, 7x + 3y - 2z = 8 మరియు $2x + 3y + \lambda z = 5$ సమీకరణాలు సాధన కలిగి ఉండవు.

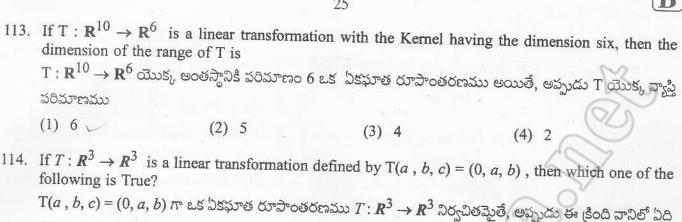
(1) 0

(2) 3

(3) 4

(4) 5

112. For what value of λ , the equations $2x_1 - 2x_2 + x_3 = \lambda x_1$, $2x_1 - 3x_2 + 2x_3 = \lambda x_2 - x_1 + 2x_2 = \lambda x_3$ possess a non-trivial solution?


 λ యొక్క ఏ విలువకు, $2x_1-2x_2+x_3=\lambda x_1$, $2x_1-3x_2+2x_3=\lambda x_2$ మరియు $-x_1+2x_2=\lambda x_3$ సమీకరణ ఒక శూన్యేతర సాధనమును కలిగి ఉంటాయి?

(1) $\lambda = 1$

 $(2)^{\lambda} \lambda = 2$

(3) $\lambda = 3$

(4) $\lambda = 5$

 $T(a\,,\,b,\,c)=(0,\,a,\,b)$ గా ఒక ఏకఘాత రూపాంతరణము $T\colon {\it I\!\!R}^3 o {\it I\!\!R}^3$ నిర్వచితమైతే, అప్పుడు ఈ క్రింది వానిలో ఏది సత్యము?

(2) $T^2 = \hat{0}$ (3) $T^3 = \hat{0}$ (4) $T^4 \neq \hat{0}$ (1) $T = \hat{0}$

115. If T: $V_2(R) \rightarrow V_3(R)$ defined by T(a, b) = (2a + 3b, a - b, b) is a linear transformation, then the nullity of T is T(a,b)=(2a+3b,a-b,b) గా నిర్వచితమైన $T:V_2(\mathbf{R})\to V_3(\mathbf{R})$ ఒక ఏకఘాత రూపాంతరణమయితే, అప్పుడు T ಯುಕ್ಕ ಸಾನ್ಯತ್ಯಮು

(1) 0(4) 3

116. The transition matrix P from the standard ordered basis to the ordered basis $\{(1, 1), (-1, 0)\}$ is ప్రామాణిక క్రమ ఆధారము నుంచి క్రమ ఆధారము $\{(1,1),(-1,0)\}$ కి సంక్రమ (Transition) మాత్రిక P

 $(1) \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \qquad (2) \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \qquad (3) \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (4) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

117. Let $A = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$ and $B = \begin{bmatrix} \cos^2 \phi & \sin \phi \cos \phi \\ \sin \phi \cos \phi & \sin^2 \phi \end{bmatrix}$

If AB is a null matrix then θ and ϕ differ by

 $A = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$ మరియు $B = \begin{bmatrix} \cos^2 \phi & \sin \phi \cos \phi \\ \sin \phi \cos \phi & \sin^2 \phi \end{bmatrix}$ అనుకొందాం. AB శూన్య మాత్రిక అయితే, అప్పుడు heta మరియు ϕ ల మధ్య భేదం

(1) $\frac{\pi}{4}$

(2) an even multiple of $\frac{\pi}{2}$ $\pi/_2$ ಯುಕ್ಕ ಒಕ ಸರಿ ಗುಣಿಜಮು

(3) an odd multiple of $\pi/2$ $\frac{\pi}{2}$ యొక్క ఒక బేసి గుణిజము

 $(4) \frac{2\pi}{2}$

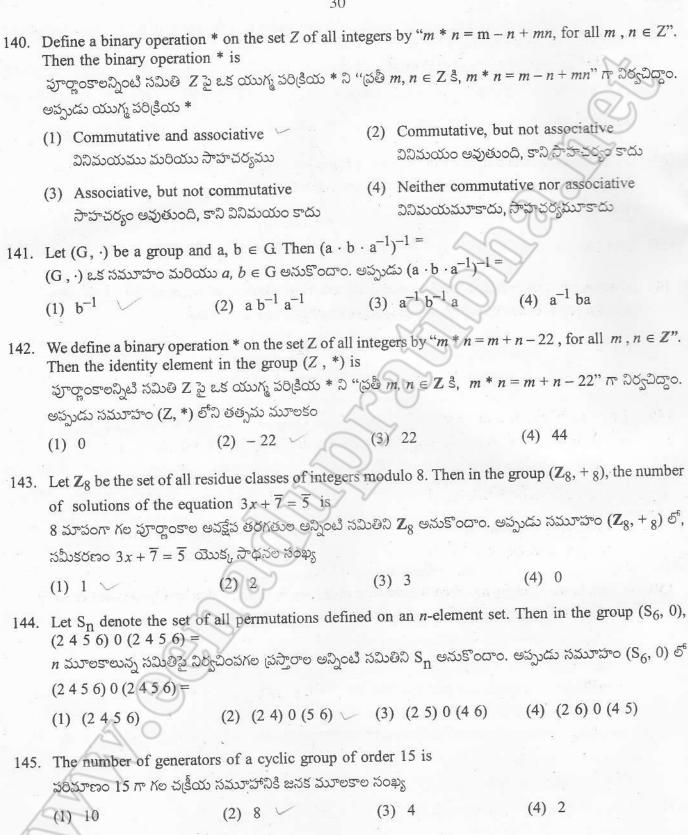
118. The dimension of the vector space $M_{2\times 4}$ of all 2×4 matrices over the field **R** of real numbers is

(3) 6

వాస్తవ సంఖ్యా క్షేతం (\mathbf{R}) పై గల అన్ని 2×4 మాత్రికలలో ఏర్పడే సదిశాంతరాళం $\mathrm{M}_{2 \times 4}$ యొక్క పరిమాణం

(2) 4

(1) 2


	If T: $V_2(\mathbf{R}) \rightarrow V_3(\mathbf{R})$ defined by T $(a, b) = (a + b)$ rank of T is		
	$\mathrm{T}\left(a\;,b\right)$ = $(a+b\;,a-b,b)$ గా నిర్వచితమైన $\mathrm{T}:V_{2}$ యొక్క కోటి	$(\mathbf{R}) \rightarrow V_3(\mathbf{R})$ as	ఏకఘాత రూపాంతరణమైతే, ఆప్పుడు T
	(1) 0 (2) 1	(3) 2	(4) 3
120.	If V is a vector space of ordered pairs of comp V is	(NO	1 "
	వాస్తవ సంఖ్యా క్షేతం ${f R}$ పై సంకీర్ణ సంఖ్యల $({f g})$ ముగ్మాల	A 1/2	
	$(1) \{(0, 0), (i, 0), (1, 0), (0, i)\}$	(2) $\{(1, 0), (i, 0),$	0), (0, 1), (0, i)}
	(3) {(1, 0), (i, 0), (0, 1), (-i, 0)}	(4) {(1, 0), (-	i, 0), (0, i), (-1, 0)}
121.	Which one of the following sets of vectors is	inearly independe	ent?
	్రకింది సదిశా సమీతులలో ఏది ఏకఘాత (రుజు) స్వతంత్రక	w?	
	(1) $S_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 0, 1), (1, 1, 0), (0, 0, 1), (1, 1, 0), (0, 0, 1), (1, 1, 0), (0, 0, 1), (1, 1, 0)$	1)}	
	(2) $S_2 = \{(1, 1, -1), (2, -3, 5), (-2, 1, 4)\}$		
	(3) $S_3 = \{(2, -1, 4), (0, 1, 2), (6, -1, 14), (4, -1, $	0,12)}	
	(4) $S_4 = \{(-1, 2, 1), (3, 0, -1), (-5, 4, 3)\}$		
	(1) S ₁ (2) S ₂	(3) S ₃	(4) S ₄
122.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation of T is generated by		
	T(x,y,z) = (x,y,0) గా ఒక ఏకఘాత రూపాంతరణం	$\Gamma: \mathbf{R}^3 \to \mathbf{R}^3$ నిర్వచిం	తమైనది అనుకొందాం, అప్పుడు T యొక్క
	శూన్యతాంతరాళం దీనితో జనితమవుతుంది		
	(1) {(0, 0, 1)}	(2) {(0, 1, 0))}
1	(3) {(1, 0, 0)}	(4) {(1, 1, 0))} ✓
6			
25	2		
15			

		27	$oldsymbol{B}$
123	B. Let R be a commutative ring with unicondition for the quotient ring R/I to be R అనేది ఒక తత్సమ సహిత వినిమయ నలయం.	ty and I be an ideal of R. Then a necess re a field is మరియు R లో I ఒక ఐడియల్ అనుకొందాం. అప్పుణ	
	R/I ఒక క్షేతం కావడానికి, ఇది ఒక ఆవశ్యక పర్యాక్ష	పై నియమం	డు వ్యుత్పన్న వలయం
	 (1) I is a prime ideal I ఒక అభాజ్య ఐడియల్ (3) I is a proper ideal I ఒక శుద్ధ ఐడియల్ 	 (2) I is a maximal ideal I ఒక అధికతమ ఐడియల్ (4) I is a non-zero ideal I ఒక శూన్యేతర ఐడియల్ 	
124	Let $f(x) = 4x^2 + 2x + 5$ and $g(x) = 3x^2$ the degree of the polynomial $f(x) \cdot g(x)$ వలయం $(\mathbb{Z}_6, +_6, \times_6)$ పై $f(x) = 4x^2 + 2x + 5$ అప్పుడు బహుపది $f(x) \cdot g(x)$ యొక్క తరగతి	+ 3r + 4 he polynomials ever the company	, +6, ×6) . Then దులు అనుకొందాం.
	(1) 4 (2) 3	(3) 2 (4) 1	
125.	W_1,W_2 లు ఒక సదీశాంతరాళం V యొక్క ఉపా	r space V then which one of the followin ంతరాళాలు అయితే, అప్పుడు ఈ క్రింది వానిలో ఏది	g is NOT true? అసత్యము?
	(1) $W_1 \cap W_2$ is non empty $W_1 \cap W_2$ శూన్యేతరం	(2) $W_1\cap W_2$ is a sub space of $V(F)$ యొక్క ఒక ఉపాంతరాళం V	
	(3) $W_1 \cup W_2$ is a sub space of $V(F)$ $V(F)$ యొక్క ఒక ఉపాంతరాళం $W_1 \cup W_2$	(=) 11111 Just 200 000 40 V	
26.	Which of the following statements is NO కింది ప్రవచనాలలో ఏది సత్యము కాదు?	7	
	ఒక రుజు పరాధిన సదీశా సమీతీ యొక్క అన్ని	et of vectors need not be linearly depende ఉపసమీతులు రుజు పరాధీనము కానక్కరలేదు.	ent
	(II) Any subset of a linearly independent ఒక ఏకఘాత స్వతంత్ర సదీశా సమీతి యొక్క ఏ	set of vectors is linearly independent ఏ ఉపసమితి అయినా ఏక ఘాత స్వతంత్రము	
	(III) Any set of vectors which contains the శూన్య సదీశను కలిగి ఉండే ఏ సదీశల సమీతి ఆ	e zero (null) vector is linearly independer అయినా రుజు స్వతంత్రము	
	(IV) A set S of <i>n</i> vectors is linearly indeperture $C_1 \alpha_1 + C_2 \alpha_2 + \dots + C_n \alpha_n = \overline{0}$	endent if and only if for vectors α_1 , α_2 , \Rightarrow each $C_i = 0$.	
		(7) 17	

[P.T.O.

127.	madula 12 is			residue classes of integers
	12 మాపంగా గల పూర్ణాంకాల	అన్ని అవక్షేప తరగతుల వ	లయం (\mathbf{Z}_{12} , $+_{12}$, \times_{12})	ණ්, මపరිవర్తిత (idempotent)
	మూలకాల సంఖ్య			670
	(1) 1	(2) 2	(3) 3	(4) 4
128.	In the ring (Z_{15} , $+_{15}$, \times_{15}	of all residue clas	ses of integers modulo	15, the number of solutions
	of the equation " $x^2 = \overline{1}$ "	18 ని ంచనేక తరగతుల నల	010 (Z. +15. ×15)	రో, సమీకరణం " $x^2 = \overline{1}$ " కి గల
	15 మాపంగా గల పూర్ణాంకాల (అన్న అపెక్షప్ తరిగతుల పర	ωυ (2 ₁₅ , ·15, ·15)	Q
	మూలాల సంఖ్య	(2) 1	(3) 2	(4) 3
	(1) 0	(2) 1	6101	
129.	Oic			e classes of integers modulo
	9 మాపంగా గల పూర్ణాంకాల ఆ	న్ని అవక్షేప తరగతుల వలయ	రుం ($\mathbb{Z}_9, +_9, imes_9$) లోని, శూనే	్కితర శూన్య భాజకాల సెంఖ్య
	(1) 0	(2) 1	(3) 2	(4) 3
130.	Which one of the follow క్రింది వలయాలలో పూర్ణాంక త	ring rings is an integra రదేశం అవుతూ, క్షేతం కాని	තී බ්බ්?	
	(1) $(\mathbb{Z}_7, +_7, \times_7)$	(2) $(Z, +, \cdot)$	(3) $(\mathbb{Z}_6, +_6, \times_6)$	$(4) (R, +, \cdot)$
131	. The number of prime id	eals in a field is	The state of the s	
	ఒక క్షేత్రంలోని ప్రధాన ఆదర్శా		*	V
	(1) 1	(2) 2	(3) Infinite (මර්ටම්	
132	In the ring $(Z_{13}, +_{13}, \times$	13) of all residue class	ses of integers modulo	13, the number of associates
	of 4 is	7		
	13 మాపంగా గల పూర్డాంకాల	అన్ని అవక్షేప తరగతుల వం	ుయం ($Z_{13}, +_{13}, \times_{13}$) లో,	4 యొక్క సహచరుల సంఖ్య
	(1) 12	(2) 8	(3) 4	(4) 1
133	3. Over the ring (Z ₇ , + ₇ , >	mial?		, which one of the following
	7 మాపంగా గల ఫూర్హాంకాల	ఆన్పి అవక్షేప తరగతుల వలం	యం ($oldsymbol{Z}_7, +_7, imes_7$) పై, క్రింది	వానిలో అక్షీణబహుపది ఏది?
6	(1) $x^2 + 2x + 3$	(2) $x^2 + 3$	(3) $x^2 + x + 1$	(4) $x^2 + x + 5$

1 - The define J. Z - G by	$I(n) = (i)^n$ for all n	E / then Korf-
(\mathbf{Z}, \mathbf{T}) \mathbf{Z}	ుాహం. (G. ∙) అనేది గుం	つろっ グ・ラックをなっ コーメ メイトー の
ఎర్పడ సమూహం అనుకొందాం. $f: Z \to G$ ని, ప్రతీ	$n \in Z \hat{s}, f(n) = (i)^n \pi$	ా నిర్వచిస్తే, f యొక్క అంతస్థము $\operatorname{Ker} f$ =
$(1) \mathbf{Z} \qquad \qquad (2) \mathbf{2Z}$	(3) 3 Z	(4) 4Z
Let G be a group and $a \in G$. If $0(a) = 6$ th	$en 0(a^8) =$	
G ఒక సమూహం, $a \in G$ అనుకొందాం. 0 $(a) = 6$	ಅಯಿತೆ, $0 (a^8) =$	~ O'
(1) 48 (2) 2	(3) 3	(4) 4
పరిమాణం 72 గా గల ఒక సమూహాన్ని G అనీ, పరివ	మాణం 18 గా గల దాని ఒ	క ఉపనమూహాని. H జనీ అనుకాండాం
అప్పుడు G లో H యొక్క విభిన్న ఎడమ సహసమితుం	ల సంఖ్య	11 ON GAUS 00.00.
(1) 4 (2) 9	(3) 18	(4) 6
In the ring ($oldsymbol{Z}$, $+$, \cdot) of integers, the number పూర్హాంకాల వలయం ($oldsymbol{Z}$, $+$, \cdot) లో, అధికతమ ఆదర్శా	r of maximal ideals is pe (ಐడియల్) సంఖ్య	
(1) 0 (2) 1	(3) 2	(4) Infinite (అనంతము)
The number of prime ideals of the ring ($oldsymbol{Z}_{11}$, $oldsymbol{I}_{11}$ మాపంగా గల పూర్ణాంకాల అన్ని అవక్షేప తరగతుల వ	$+_{11}, \mathrm{X}_{11}$) of all residu రలయం (Z_{11} , $+_{11}, \mathrm{X}_{11}$	e classes of integers modulo 11 is
(1) 0 (2) 1		(4) more than 2
0 1	2	ರೆಂದುಕಂಟೆ ఎక್ಕುವ
న్ని పూర్ణాంకాల వలయం ($oldsymbol{Z}$, $+$, \cdot) లో, $13oldsymbol{Z}$ అనే స 1	13 Z is మితి	
	స	
b) a prime ideal but not a maximal ideal		
ఒక ప్రధాన ఆదర్శం అవుతుంది, కాని అధికతమ ఆ	దర్శం కాదు	
) a maximal ideal	The sale of the sale	
ఒక అధికతమ ఆదర్శము		
	$(\mathbf{Z},+)$ అనేది సంకలనం దృష్ట్యా పూర్ణాంకాలన్నిటి సవ ఏర్పడే సమూహం అనుకొందాం. $f\colon Z\to G$ ని, డ్రాఫీ సమూహం అనుకొందాం. $f\colon Z\to G$ ని, డ్రాఫీ సమూహం, $a\in G$ అనుకొందాం. 0 (a) $=6$ th G ఒక సమూహం, $a\in G$ అనుకొందాం. 0 (a) $=6$ (1) 48 (2) 2 Let G be a group of order 72 and H a sub g co-sets of H in E is పరిమాణం 72 m గల ఒక సమూహాన్ని G అనీ, పరిశ్రీ అప్పడు G లో H యొక్క విభిన్న ఎడమ సహసమితుంది. (1) (2) (2) (3) (3) (4) (4) (4) (5) (5) (7) (7) (7) (7) (7) (7) (8) (8) (8) (9) (9) (9) (1) (9) (1) (1) (1) (2) (1) (2) (3)	Let G be a group and $a \in G$ If $0(a) = 6$ then $0(a^8) = G$ as sample, $a \in G$ each source,

	31
146. If A , B are two sets, then (A–B) ∩ (I A , B లు రెండు సమీతులైతే, (A–B) ∩ (B –	B – A) = – A) =
(1) A ∩ B (3) (A ∪ B) ′	$(2) (A' \cup B') \cap (A \cup B)$
	$(4) (A' \cap B') \cup (A \cap B)$
147. If set A has 5 elements, then the numb ఒక సమితి A లో 5 మూలకాలుంటే, A యొక్క శ	er of nonempty subsets of A is హన్యేతర ఉపసమితుల సంఖ్య
(1) 32	(2) 31
(3) 25	(4) 24
148. If set A has 6 elements, then the number ఒక సమితి A లో 6 మూలకాలుంటే, A పై నిర్వచిం	er of reflexive relations that can be defined on A is ంపగల పరావరన సంబంధాల సంఖం
$(1) 2^{36}$	(2) 2^{30}
(3) 36	(4) 30
149. If $A = \{a, b, c\}$, then the relation $R = \{a, b, c\}$ පොමේ, $A \ge 3$ වරු ධීම් බූව හිරු හිරු විර්	(a, b), (b, a), (a, a)} defined on A is a οφο R = {(a, b), (b, a), (a, a)} e ε
(1) Reflexive relation only పరావర్తన సంబంధం మాత్రమే	(2) Symmetric relation only సౌష్ఠవ సంబంధం మాత్రమే
(3) Transitive relation only సంక్రమ సంబంధం మాత్రమే	(4) Symmetric and transitive relation సౌష్ఠవ మరియు సంక్రమ సంబంధం
150. If a set G has 4 elements, then the numb ఒక సమితి G లో 4 మూలకాలుంటే, G పై నిర్వచించ	er of binary operations that can be defined on G is රුත්ව රාහා ප්රාද්ධ ප්රාදේශය ප්රාදේශය
(1) 4 ¹⁶	(2) 4 ⁴
$(3) 2^{16}$	(1) 4