

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 DIGITAL ELECTRONIC CIRCUITS

SEMESTER - 4

Tim	ie : 3	Hours	3]				[Full Marks : 70
				GRO	OUP - A		
•			()	Multiple Choic	е Туре (guestions):	
1.	Cho	oose tl	he correct altern	natives of the f	ollowing		10 × 1 = 10
	i)	Wh					
		a)	Gray		b)	Excess-3	
		c)	BCD		d)	Parity code	
	÷ .	e)	Hamming cod	de.			
	ii)	Wh	ich one is know	n as reflected	code ?	X	
		a)	Gray		b)	Excess-3	
		c)	BCD		d)	Hamming code	
		e)	Parity code.				
	iii)	(15	i) ₁₀ - (27) ₁₀ is	s equal to (us	ing 2's co	omplementing meth	od):
		a)	01100		b)	10100	
	1	c)	00100		d)	11100	
	2	e)	01010.				
	iv)	2's (complement of v	which 5-bit bir	nary num	nber is the same mu	mber ?
		a)	11111		ы	00001	

d)

01111

24503-(II)-B

c)

01000

10000.

v)	If $\sqrt{(34)}$ is equal to 5 in a particular number system, then base of that number										
	syst	em is		•							
	a) _	5		b)	6						
	c)	7		d)	8						
	Ej	9.				•					
vi)	How	many Flip-flops	are required to	desig	n MOD-1024 counter?						
	a)	1024		b)	102						
	c)	10	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) - \frac{1}{2} \right)$	ď)	1						
	e)	None of these.									
vii)	Res	olution of <i>n</i> -bit D	AC is given by	(
	a)	1/(2 ⁿ -1)		b }	1/2 ⁿ						
	c)	$1/(2^{n}+1)$		d)	$1/2^{-n}$.	. [
viii)	То	lesign an MOD-N	e number of FFs require	d are							
	a)	N		b)	(N-1)						
	c)	7		d)	N/2.						
ix)	Rac	Race around condition occurs in a JK flip-flop when									
	a)	J = K = 0		b)	J = K = 1						
	c)	J=0, K=1		d)	J=1,K=0.						
x)	A memory has 16 bit address bus. The number of location in the memory are										
	a)	16		b)	32 ,						

65536.

d)

c)

1024

GROUP - B

5

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- Check whether the Even parity Hamming code for 4-bit data, (1001011) 2 is correct or not. If not, correct the code.
- 3. Minimize the expression using K-Map technique;

$$Y(A, B, C, D) = ABCD + \overline{B}CD + \overline{A} \cdot \overline{B} + A + BD.$$

4. Implement the function using only one 8×1 MUX and (connect only B,C,D with select lines to select the data inputs)

$$F(A, B, C, D) = \Sigma m (0, 1, 2, 5, 9, 11, 13, 15).$$

- Draw neat diagram of 4-bit Bi-directional shift register using mode control (M). When
 M is logic zero then left shift and right shift for M is logic one.
- 6. Design Adder/Subtractor composite unit using 4-bit binary full adder and necessary logic gates.

GROUP - C

(Long Answer Type Questions)

Answer any three questions of the following.

 $3\times15=45$

7. a) Minimize the following expression using K-map and realise the simplified function using NOR gates only

$$F(A, B, C, D) = \pi M(1, 2, 3, 8, 9, 10, 11, 14) d(7, 15)$$

b) Find the complement of (735) 8

•

3 + 3

- c) Draw the logic circuit diagram for a 2-to-4 decoder with one active low enable line. Assume also that all the outputs of the decoders are active low.
- d) How do you cascade two 2-to-4 decoders to make one 3-to-8 decoder? Draw the necessary circuit.

b) A ROM is used to implement of the Boolean function:

$$F_1(A, B, C, D) = ABCD + \bar{A} \, \bar{B} \, \bar{C} \, \bar{D}$$

 $F_2(A, B, C, D) = (A + B) (\bar{A} + \bar{B} + \bar{C})$
 $F_3(A, B, C, D) = \sum 13, 15)$

- 1) What is the minimum size of ROM required?
- ii) Determine the data in each location of the ROM.

5 + 5

- 9. a) Draw the state table of a JK flip-flop and write down its characteristic equation.
 - b) Draw the circuit of Master / Slave JK flip-flop and explain the operation of the circuit.
 - c) What do you mean by 0's catching and 1's catching phenomena in the master / slave JK flip-flop?

 5 + 6 + 4
- 10. a) Describe the operation of a Flash Type A/D converter with proper circuit.
 - b) What are the advantages and disadvantages of the Flash Type A/D converter ? 3
 - c) Discuss the following TTL parameters briefly:

3 ~ 0

- i) Floating input
- ii) Fan-out
- iii) Switching speed.
- 11. a) Draw the timing diagram of a MOD-10 counter where the MOD-10 counter is designed by cascading MOD-2 followed by MOD-5 counter units.
- b) Design a sequential circuit that implements the following state diagram. Use all D-type FF for the design. 7 + 8

