Name .	***************************************	
IVUIIU		
Roll No.	* *************************************	
	法违法 하는 점점 취임 하는 원이들의 생활을 되었다. 그는 사람은 사람들이 되는 사람들이 살아 다른다.	
Inviallat	or's Signature:	
	김 경우리 교육한 보고 하다 그리는 이 전경 남자가 다니다.	

FORMAL LANGUAGE AND AUTOMATA THEORY

Time Allotted: 3 Hours

Full Marks ? 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- i) The production grammar $\{S \rightarrow aSbb, S \rightarrow abb\}$ is
 - a) type-3 grammar
- b) type-2 grammar
- c) type-1 grammar
- d) type-0 grammar.
- ii) The loop-free testing graph indicates that
 - a) the machine has finite memory
 - b) the machine has non-finite memory
 - c) the machine has finite states
 - d) the machine has non-finite states.

[Turn over

iii) A shift register is a

- a) Mealy M/c
- b) Moore M/c
- c) Turing M/c
- d) All of these.

iv) Consider the following regular expression:

R = (ab + abb) *bbab.

Which of the following is not in the set denoted by R?

- a) ababab
- b) ababbabbab

c) abbbab

d) abbabbbab.

v) Which of the following is correct?

- a) Language can be derived from the FA
- b) Regular expressions can be derived from the FA
- c) FA can be derived from the language
- d) Both (a) & (b).

vi) The reduced grammar of $S \rightarrow AB \mid a, A \rightarrow a$ is

a) $S \rightarrow a$

b) $S \rightarrow a \mid A$

 $A \rightarrow a$

 $A \rightarrow a$

c) $S \rightarrow a$

d) $S \rightarrow aa$.

vii) Which of the following grammars generates strings with any number of 1's?

- a) $S \rightarrow 1A, A \rightarrow \varepsilon$
- b) $S \rightarrow 1S, S \rightarrow \varepsilon$
- c) $S \rightarrow S1, S \rightarrow \varepsilon$
- d) (b) & (c).

- viii) Input sequence of an information lossless machine can be determined from the knowledge of
 - a) only output sequence
 - b) output sequence and initial state
 - c) output sequence, initial state and final state
 - d) initial state.
- ix) Context Free Grammar can be recognized by
 - a) finite state automata
 - b) 2-way linear bounded automata
 - c) push-down automata
 - d) both (b) & (c).
- x) Which of the following statements is wrong?
 - a) A turing machine cannot solve halting problem.
 - b) Set of recursively enumerable languages is closed under union.
 - c) A finite state machine with 3/stacks is more powerful than finite state machine with 2 stacks.
 - d) Context sensitive grammar can be recognized by a linearly bounded memory machine.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. a) State the pumping lemma for regular language. 2
 - b) Using pumping lemma prove that the set $L = \{0^{i} | i | i \ge 1\}$ is not regular.
- 3. Draw the transition diagram of a finite state automaton that accepts all strings over { 0, 1 }
 - a) having odd number 0f 0's
 - b) having even number of 0's and even number of 1's.

 $2\frac{1}{2} + 2\frac{1}{2}$

4. Convert the following context free grammar into an equivalent grammar in CNF:

 $S \rightarrow aAbB$

 $A \rightarrow abAB / aAA / a$

 $B \rightarrow bBaA / bBB / b$.

- 5. State and discuss Myhill-Nerode's theorem.
- 6. Construct a regular grammar G generating the regular set represented by

P = a*b(a+b)*.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$ 7. a) State the difference between DFA and NFA. 2
b) Design an NFA which accepts set of all binary strings containing 1100 or 1010 as substrings. 3
c) What is Regular language? 2
d) Find Regular expressions are all of the following. 3 × 15 = 45

- d) Find Regular expressions over $\Sigma = \{a, b\}$ for the languages defined as follows:
 - 1) $L1 = \{ a^m b^m : m > 0 \}$
 - ii) $L2 = \{ a^{2n} b^{2m+1} \mid n \ge 0, m n \ge 0 \}$
 - iii) $L3 = \{b^m ab^n : m > 0, n > 0\}$ 1 + 1 + 1
- e) Find the Regular expression for the following transition graph:

8. a) Define pushdown automata.

2

- b) Construct a PDA accepting the set of all strings over {a, b} with equal number of a's and b's. 5
- c) What are the nonempty transitions in an NPDA? 2
- d) Let G be a grammar $s \rightarrow 0B \mid 1A, A \rightarrow 0 \mid 0S \mid 1AA$, $B \rightarrow 1 \mid 1S \mid 0BB$. For the string 00110101, find
 - i) leftmost derivation
 - ii) rightmost derivation
 - iii) derivation tree.

2 + 2 + 2

9. a) Construct the minimum state automata equivalent to given automata M defined below:

states	Σα	b
$\rightarrow q_0$	q_5	q_1
q_1	q_2	q_6
*q2	q_2	q_0
q_4	q_5	q_7
q_5	q_6	q_2
q_6	q_4	q_6
q_7	q_2	q_6

(* q_2 indicates that q_2 is the final state)

R

b) Convert the following NFA to DFA.

c) Prove that CFLs are not closed under intersection and complement operation.

10. a) What is information lossless machine?

3

b) Consider the machine shown in the following table:

Present State	Next State		
	X = 0	X = 1	
A	A, 1	C, 1	
В	E, 0	B, 1	
C	D, 0	A, 0	
D	C, 0	В, 0	
E	B, 1	`A, 0	

Is this machine information lossless of finite order ? If yes, find the order μ .

c) Design a 2-input 2-output Mealy machine, which takes as input a binary stream and generates on output of 1 only when a sequence of the pattern 01011 is found in the input stream. Design should be clearly justified. 7

11. a) Consider the following machine:

PS	NS			
	I_1	I_2	I_3	I ₄
A	-	_	E, 1	-
В	C, 0	A, 1	В, 0	e -
С	C, 0	D, 1		A, 0
D		E, 1	В, -	_
E	В, 0	-	C, -	B, 0

- i) Draw the merger graph.
- ii) Draw the merger table.
- iii) Draw the compatibility graph.
- iv) Find the minimal closed covering with justification.

b) Consider the machine given below:

PS	NS			
	X = 0	X = 1	Z	
A :	D	G	0	
В	С	E	0	
C,	н	F	0	
D	F	F	0	
E	В	В	0	
F	G	D	0	
G	A	В	0	
H	E	C /	1	

Derive the closed partitions. Construct a π -lattice for it.

6