# www.questionpaperz.in 

Unfold Every Question

## UPSEE - 2002

## Full Paper

## Section-1 <br> Phusics

1. This symbol represents :

1) NOR gate
2) AND gate
3) OR gate
4) NAND gate
2. The equation of state of some gases can be expressed as
$\left(\mathrm{p}+\frac{\mathrm{a}}{\mathrm{V}^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$
where P is the pressure, V the volume, T the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is :
1) $\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]$
2) $\left[M^{-1} L^{5} T^{-2}\right]$
3) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
4) $\left[\mathrm{ML}^{-5} \mathrm{~T}^{-2}\right]$
3. A can filled with water is rotated in a vertical circle. What must be the minimum velocity given to the can, so that water does not fall ?
1) $v=\sqrt{ } r g$
2) $v=\sqrt{ }(r) / g$
3) $v=1 / \sqrt{ } r g$
4) $v=g / \sqrt{ } r$
4. A shell is fired from a cannon with a velocity v at an angle $\theta$ with the horizontal direction. At the highest point in its path, it explodes into two pieces of equal masses. One of the pieces retraces its path to the cannon. The speed of the other piece immediately after the explosion is :
1) $3 v \cos \theta$
2) $2 v \cos \theta$
3) $(3 / 2) v \cos \theta$
4) $v \cos \theta$
5. A 16 kg block moving on a frictionless horizontal surface with a velocity of $4 \mathrm{~m} /$ s compresses an ideal spring and comes to rest. If the force constant of the spring be $100 \mathrm{~N} / \mathrm{m}$, then the spring is compressed by :
1) 1.6 m
2) 4 m
3) 6.1 m
4) 3.2 m
6. A mass of $6 \times 10^{24} \mathrm{~kg}$ is to be compressed in a sphere in such a way that the escape velocity from the sphere is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What should be the radius of the sphere ? ( $\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$ )
1) 9 km
2) 9 m
3) 9 cm
4) 9 mm
7. A large cylindrical tank has a hole of area $A$ at its bottom. Water is poured in the tank by a tube of equal cross-sectional area $A$, ejecting water at the speed $v$. Which one of the following situations will be realised?
1) No water will stay in the tank
2) The water level will keep on rising
3) The water level will rise to a height $v^{2} / 2 g$ and then stop
4) The water level will oscillate with mean height $v^{2} / g$
8. A drop of mercury of radius 2 mm is split into 8 identical droplets. Find the increase in surface energy. (Surface tension of mercury is $0.465 \mathrm{~J} / \mathrm{m}^{2}$ )
1) $23.4 \mu \mathrm{~J}$
2) $18.5 \mu \mathrm{~J}$
3) $26.8 \mu \mathrm{~J}$
4) $16.8 \mu \mathrm{~J}$
9. A wire of length $L$ and radius $r$ fixed at one end and a force $F$ applied to the other end produces an extension $l$. The extension produced in another wire of the same material of length $2 L$ and radius $2 r$ by a force $2 F$, is :
1) $/$
2) $2 I$
3) 41
4) $1 / 2$
10. A small source of sound moves on a circle as shown in the figure and an observer is sitting on $O$. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and $\mathrm{V}_{3}$ be the frequencies heard when the sources are at, $\mathrm{A}, \mathrm{B}$ and $C$ respectively. Then,

1) $v_{1}>v_{2}>v_{3}$
2) $v_{2}>v_{3}>v_{1}$
3) $v_{1}=v_{2}>v_{3}$
4) $v_{2}>v_{1}>v_{3}$
11. A transverse wave is described by the equation
$y=y_{0} \sin 2 \pi\left(f t-\frac{x}{\lambda}\right)$
The maximum particle velocity is equal to four times the wave velocity, if :
1) $\lambda=\left(\pi y_{0} / 4\right)$
2) $\lambda=\left(\pi y_{0} / 2\right)$
3) $\lambda=\pi y_{0}$
4) $\lambda=2 \pi y_{0}$
12. A particle executes a simple harmonic motion of time period T . Find the time taken by particle to go directly from its mean position to half the amplitude.
1) $T / 2$
2) $\mathrm{T} / 4$
3) $\mathrm{T} / 8$
4) $\mathrm{T} / 12$
13. Two trains are moving towards each other with speeds of $20 \mathrm{~m} / \mathrm{s}$ and $15 \mathrm{~m} / \mathrm{s}$ relative to the ground. The first train sounds a whistle of frequency 600 Hz , the frequency of the whistle heard by a passenger in the second train before the train meets is :
(the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ )
1) 600 Hz
2) 585 Hz
3) 645 Hz
4) 666 Hz
14. Two coherent sources of different intensities send waves which interfere. The ratio of maximum intensity to the minimum intensity is 25 . The intensities of the sources are in the ratio :
1) $25: 1$
2) $5: 1$
3) $9: 4$
4) $25: 16$
15. The optical path of a monochromatic light is same, if it goes through the thickness of 4.0 cm of glass and 4.5 cm of water. If the refractive index of glass is 1.3 , the refractive index of the water is :
1) 1.30
2) 1.36
3) 1.42
4) 1.46
16. A microscope is focussed on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over a mark. How should the microscope be moved to get the mark again in focus ?
1) 1 cm upward
2) 4.5 cm downward
3) 1 cm downward
4) 2 cm upward
17. A thin lens made of glass of refractive index $=1.5$ has a focal length equal to 12 cm in air. It is now immersed in water $(\mu=(4 / 3))$. Its new focal length is :
1) 48 cm
2) 36 cm
3) 24 cm
4) 12 cm
18. Two points separated by a distance of 0.1 mm can just be resolved in a microscope when a light of a wavelength $6000 \AA$ is used. If the light of wavelength $4800 \AA$ is used, the limit of resolution becomes:
1) 0.08 mm
2) 0.10 mm
3) 0.12 mm
4) 0.06 mm
19. Solar radiation emitted by sun resembles that emitted by a black body at a temperature of 6000 K. Maximum intensity is emitted at a wave length of about $4800 \AA$. If the sun were to cool down from 6000 K to 3000 K , then the peak intensity would occur at a wavelength :
1) $4800 \AA$
2) $9600 \AA$
3) $7200 \AA$
4) $6400 \AA$
20. Air is pumped into an automobile tube up to a pressure of 200 kPa in the morning when the air temperature is $22^{\circ} \mathrm{C}$. During the day, temperature rises to $42^{\circ} \mathrm{C}$ and the tube expands by $2 \%$. The pressure of the air in the tube at this temperature, will be approximately :
1) 212 kPa
2) 209 kPa
3) 206 kPa
4) 200 kPa
21. A block of mass 100 g slides on a rough horizontal surface. If the speed of the block decreases from $10 \mathrm{~m} / \mathrm{s}$ to $5 \mathrm{~m} / \mathrm{s}$, the thermal energy developed in the process is :
1) 3.75 J
2) 37.5 J
3) 0.375 J
4) 0.75 J
22. An ideal gas at $27^{\circ} \mathrm{C}$ is compressed adiabatically to (8/27) of its original volume.
$(5 / 3)$, then the rise in temperature is :
1) 575 K
2) 450 K
3) 225 K
4) 375 K
23. Two rods (one semicircular and other straight) of same material and of same crosssectional area are joined as shown in the figure. The points $A$ and $B$ are maintained at different temperatures. The ratio of the heat transferred through a cross-section of a

1) $2: \pi$
2) $1: 2$
3) $\pi: 2$
4) $3: 2$
24. In the circuit shown, the heat produced in the $\sqrt{2}$ resistor is $10 \mathrm{cal} / \mathrm{s}$. The heat generated in the $4 \Omega$ resistor is :

1) $1 \mathrm{cal} / \mathrm{s}$
2) $2 \mathrm{cal} / \mathrm{s}$
3) $6 \mathrm{cal} / \mathrm{s}$
4) $8 \mathrm{cal} / \mathrm{s}$
25. A radioactive material decays by simultaneous emission of two particles with half-lives 1620 and 810 year respectively. The time in year after which one-fourth of the material remains, is :
1) 4860 year
2) 3240 year
3) 2340 year
4) 1080 year
26. A potential barrier of 0.50 V exists across a $\mathrm{p}-\mathrm{n}$ junction. If the depletion region is $5.0 \times 10^{-}$ ${ }^{7} \mathrm{~m}$ wide, the intensity of the electric field in this region is :
1) $1.0 \times 10^{6} \mathrm{~V} / \mathrm{m}$
2) $1.0 \times 10^{5} \mathrm{~V} / \mathrm{m}$
3) $2.0 \times 10^{5} \mathrm{~V} / \mathrm{m}$
4) $2.0 \times 10^{6} \mathrm{~V} / \mathrm{m}$
27. The circuit shown in the figure contains two diodes each with a forward resistance of $5 \boldsymbol{Q}$ and with finite backward resistance. If the battery of 6 V , the current through the $\Omega 100$ resistance (in ampere) is :

1) zero
2) 0.02
3) 0.03
4) 0.036
28. If the velocity of light (c), gravitational constant (G) and Planck's constant (h) are chosen as fundamental units, then the dimensions of mass in new system is :
1) $c^{1 / 2} G^{1 / 2} h^{1 / 2}$
2) $c^{1 / 2} G^{1 / 2} h^{-1 / 2}$
3) $c^{1 / 2} G^{-1 / 2} h^{1 / 2}$
4) $C^{-1 / 2} G^{1 / 2} h^{1 / 2}$
29. A block of mass 2 kg is suspended through two light spring balance $A$ and $B$ as shown in figure. These balances A and B will respectively read :

1) 2 kg and zero
2) zero and 2 kg
3) 2 kg and 2 kg
4) 1 kg and 1 kg
30. A stone dropped from a balloon which is at a height h , reaches the ground after t seconds. From the same balloon, if two stones are thrown, one upwards and the other downwards, with the same velocity $u$ and they reach the ground after $t_{1}$ and $t_{2}$ seconds respectively, then :
1) $t=t_{1}-t_{2}$
2) $t=\left(\left(t_{1}+t_{2}\right) / 2\right)$
3) $t=\sqrt{ } t_{1} t_{2}$
4) $t=\sqrt{ }\left(t_{1}{ }^{2}-t_{2}{ }^{2}\right)$
31. A shell at rest at the origin explodes into three fragments of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and m kg . The 2 kg and 1 kg pieces fly off with speeds of $12 \mathrm{~m} / \mathrm{s}$ along x -axis and $16 \mathrm{~m} / \mathrm{s}$ along $y$-axis respectively. If the m kg piece flies off with a speed of $40 \mathrm{~m} / \mathrm{s}$, the total mass of the shell must be :
1) 3.7 kg
2) 4 kg
3) 4.5 kg
4) 5 kg
32. If a sphere is rolling, then the ratio at its rotational kinetic energy to the total kinetic energy is :
1) $1: 2$
2) $2: 5$
3) $2: 7$
4) $5: 7$
33. A geostationary satellite is orbiting the earth at a height of 6 R above the surface of earth, $R$ being the radius of earth. The time period of another satellite at a height of 2.5 R from the surface of earth, is :
1) 10 h
2) $(6 / \sqrt{2}) h$
3) 6 h
4) $6 \sqrt{ }(2) h$
34. A body weights $w$ newton at the surface of the earth. Its weight at a height equal to half the radius of the earth, will be :
1) $w / 2$
2) $2 w / 3$
3) $4 w / 9$
4) $8 w / 27$
35. A spring of force constant k is cut into two pieces such one piece is three times the length of the other. The longer piece will have a force constant of :
1) $(3 / 4) \mathrm{k}$
2) $(4 / 3) \mathrm{k}$
3) 4 k
4) 9 k
36. For an ideal gas of diatomic molecules, where $C_{P}$ and $C_{V}$ are the two specific heats of the gas and $R$ the gas constant, then :
1) $C_{P}=(5 / 2) R$
2) $C_{V}=(3 / 2) R$
3) $C_{P}-C_{V}=2 R$
4) $C_{P}=(7 / 2) R$
37. The P-V diagram of a system undergoing thermodynamic transformation is shown in figure. The work done by the system in going from $A \rightarrow B \rightarrow C$ is 50 J and 20 cal heat is given to the system. The change in internal energy between $A$ and $C$ is :

1) 34 J
2) 70 J
3) 84 J
4) 134 J
38. Two rods of the same length and material transfer a given amount of heat in 12 s when they are joined end to end. But when they are joined lengthwise, they will transfer the same amount of heat, in the same conditions, in :
1) 1.5 s
2) 3 s
3) 24 s
4) 48 s
39. Two identical flutes produce fundamental notes of frequency 300 Hz at $27^{\circ} \mathrm{C}$. If the temperature of air at one flute is increased to $31^{\circ} \mathrm{C}$, the number of the beats heard per second, will be :
1) 1
2) 2
3) 3
4) 4
40. A source of sound of frequency 256 Hz is moving rapidly towards a wall with a velocity of 5 $\mathrm{m} / \mathrm{s}$. The speed of sound is $330 \mathrm{~m} / \mathrm{s}$. If the observer is in between the wall and the source, then beats per second heard will be :
1) 7.8 Hz
2) 9.7 Hz
3) 3.9 Hz
4) zero
41. The coefficient of performance of a Carnot's refrigerator working between $30^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ is :
1) 10
2) 1
3) 9
4) zero
42. The equivalent capacitance in the circuit between $A$ and $B$ will be :

1) $1 \mu \mathrm{~F}$
2) $2 \mu \mathrm{~F}$
3) $3 \mu \mathrm{~F}$
4) $(1 / 3) \mu \mathrm{F}$
43. The electric potential at a point ( $x, y$ ) in the $x-y$ plane is given by $V=-k x y$. The field intensity at a distance $r$ from the origin varies as :
1) $r^{2}$
2) $r$
3) $1 / r$
4) $1 / r^{2}$
44. If n drops, each of capacitance C , coalesce to form a single big drop, then the ratio of the energy stored in the big drop to that in each small drop, will be :
1) $n: 1$
2) $n^{1 / 3}: 1$
3) $n^{5 / 3}: 1$
4) $n^{2}: 1$
45. 125 cm of potentiometer wire balances the emf of a cell and 100 cm of the wire is required for balance, if the poles of the cell are joined by a $2 \Omega$ resistor. Then the internal resistance of the cell is :
1) $0.25 \Omega$
2) $0.5 \Omega$
3) $0.75 \Omega$
4) $1.25 \Omega$
46. Three bulbs of $40 \mathrm{~W}, 60 \mathrm{~W}$ and 100 W are connected in series to a current source of 200 V . Which of the following statements is true ?
1) 40 W bulb glow brightest
2) 60 W bulb glow brightest
3) 100 W bulb glow brightest
4) All bulbs glow with same brightest
47. At room temperature, copper has free electron density of $8.4 \times 10^{28} / \mathrm{m}^{3}$. The copper conductor has a cross-section of $10^{-6} \mathrm{~m}^{2}$ and carries a current of 5.4 A . The electron drift velocity in copper is :
1) $400 \mathrm{~m} / \mathrm{s}$
2) $0.4 \mathrm{~m} / \mathrm{s}$
3) $0.4 \mathrm{~mm} / \mathrm{s}$
4) $72 \mathrm{~m} / \mathrm{s}$
48. A part of a long wire carrying a current $i$ is bent into a circle of radius $r$ as shown in figure. The net magnetic field at the centre $O$ of the circular loop is :

1) $\mu_{0} \mathrm{i}$

4 r
2) $\mu_{0} \mathrm{i}$
3) 2 r
4) $\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{r}}(\pi+1)$
$\frac{\mu_{0} \mathrm{i}}{2 \pi r}(\pi-1)$
49. A charged particle moving with velocity $v$ is subjected to electric field $E$ and-magnetic field B. The paritcle will go undetected, if :

1) $E$ is perpendicular to $B$
2) $E$ is parallel to $v$ and perpendicular to $B$
3) $E$ and $B$ both are parallel to $v$
4) $E, B$ and $v$ are mutually perpendicular but $v=(E / B)$
50. A $36 \Omega$ galvanometer is shunted by resistance of $4 \Omega$. The percentage of the total current, which passes through the galvanometer is :
1) $8 \%$
2) $9 \%$
3) $10 \%$
4) $91 \%$
51. The meniscus of a liquid contained in one of the limbs of a narrow U-tube is placed between the pole pieces of an electromagnet with the meniscus in line with the field. When the electromagnet is switched on, the liquid is seen to rise in the limb. This indicates that the liquid is :
1) non-magnetic
2) paramagnetic
3) diamagnetic
4) ferromagnetic
52. Which of the following statements is incorrect about hysteresis ?
1) This effect is common to all ferromagnetic substances
2) The hysteresis loop area is proportional to the thermal energy developed per unit volume of the material
3) The hysteresis loop area is independent of the thermal energy developed per unit volume of the material
4) The shape of the hysteresis loop is characteristic of the material
53. A motor having an armature of resistance $2 \Omega$ is designed to operate at 220 V mains. At full speed, it develops a back emf of 210 V . When the motor is running at full speed, the current in the armature is :
1) 5 A
2) 105 A
3) 110 A
4) 215 A
54. A helium nucleus makes full rotation in a circle of radius 0.8 m in 2 s . The value of magnetic field $B$ at the centre of the circle, will be :
( $\mu_{0}=$ permeability constant)
1) 

$2 \times 10^{-19}$
2) $2 \times \mathrm{fo}^{-19} \mu_{0}$
3) $10^{-19} \mu_{0}$
4) $10^{-19}$
$\mu_{0}$
55. The luminous intensity of lamp which produces an illuminance of 12 lux at a distance of 5 m from it, is :

1) 4 cd
2) 60 cd
3) 300 cd
4) 720 cd
56. To print a photograph from a negative, the time of exposure to light from a lamp placed.
60 cm away is 2.5 s . If the lamp is placed 1.2 m away, then the exposure time required is :
1) 5 s
2) 10 s
3) 15 s
4) 20 s
57. If two +5 D lenses are mounted at some distance apart, the equivalent power will always be negative, if the distance is :
1) greater than 40 cm
2) equal to 40 cm
3) equal to 10 cm
4) less than 10 cm
58. The population inversion necessary for laser action used in solid state lasers is :
1) electrical discharge
2) inelastic atom-atom collision
3) direct conversion
4) optical pumping
59. The work of a substance is 4.0 eV . The longest wavelength of light that can cause photoelectron emission from this substance is approximately :
1) 540 nm
2) 400 nm
3) 310 nm
4) 220 nm
60. The innermost orbit of the hydrogen atom has a diameter 1.06 Å. The diameter of tenth orbit is :
1) $5.3 \AA$
2) $10.6 \AA$
3) $53 \AA$
4) $106 \AA$
61. Which one of the following statements about uranium is correct?
1) ${ }^{235} U$ is fissionable by thermal neutrons
2) fast neutrons trigger the fission process in ${ }^{235} U$
3) ${ }^{238} U$ is broken into fragments when bombarded by slow neutrons
4) ${ }^{235} \mathrm{U}$ is an unstable isotope and undergoes spontaneous fission
62. The decay constant of a radioactive substances $\lambda$ is The half-life and mean-life of the substance are respectively given by :
1) $\frac{1}{\lambda}$ and $\frac{(\ln 2)}{\lambda}$
2) $\frac{(\ln 2)}{\lambda}$ and $\frac{1}{\lambda}$
3) 1
$\frac{1}{\lambda}$ and $\lambda(\ln 2)$
${ }^{4)} \lambda(\ln 2)$ and $\frac{1}{\lambda}$
63. ${ }^{22} \mathrm{Ne}$ nucleus, after absorbing energy, decays into dymarticles and an unknown nucleus. The unknown nucleus is :
1) nitrogen
2) carbon
3) boron
4) oxygen
64. A logic gate having two inputs $A$ and $B$ and output $C$ has the following truth table

| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ |
| :---: | :---: | :---: |
| 1 | 1 | 0 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 0 | 0 | 1 |

This gate is :

1) $O R$
2) $A N D$
3) NOT
4) NAND
65. The given figure shows the wave forms for two inputs $A$ and $B$ and that for the output $Y$ of a logic circuit. The logic circuit is :
A.

B.

Y.

1) an AND gate
2) an OR gate
3) a NAND gate
4) a NOT gate
66. The current voltage characteristic of a $p-n$ junction diode is represented by the graph :

67. If $L, C$ and $R$ denote the inductance, capacitance and resistance respectively, the dimensional formula for $C^{2} L R$ is :
1) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{O}^{0}\right]$
2) $\left[M^{0} L^{0} T^{3} I^{0}\right]$
3) $\left[M^{-1} L^{-2} T^{6} I^{2}\right]$
4) $\left[M^{0} L^{0} T^{2} I^{0}\right]$
68. A cricketer can throw a ball to a maximum horizontal distance of 100 m . With the same effort, he throws the ball vertically upwards. The maximum height attained by the ball is :
1) 100 m
2) 80 m
3) 60 m
4) 50 m
69. From the top of a tower, a particle is projected with a velocity of $19.6 \mathrm{~m} / \mathrm{s}$ at an angle of $30^{\circ}$ with the horizontal. If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the particle will move at right angles to its initial direction of motion after a time of :
1) 1 s
2) 4 s
3) 6 s
4) 8 s
70. A can filled with water is revolved in a vertical circle of radius 4 m and the water does not fall down. The time period for a revolution is about :
1) 2 s
2) 4 s
3) 8 s
4) 10 s
71. If boiling point of water is $95^{\circ} \mathrm{F}$, what will reduction at Celsius scale ?
1) $7^{\circ} \mathrm{C}$
2) $65^{\circ} \mathrm{C}$
3) $63^{\circ} \mathrm{C}$
4) $35^{\circ} \mathrm{C}$
72. The centre of mass of three particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg is at $(3,3,3)$ with reference to a fixed co-ordinate system. Where should a fourth particle of mass 4 kg be placed, so that the centre of mass of the system of all particles shifts to a point $(1,1,1)$ ?
1) $(-1,-1,-1)$
2) $(-2,-2,-2)$
3) $(2,2,2)$
4) $(1,1,1)$
73. A pulley fixed to the ceiling carries a string with blocks of masses m and 3 m attached to its ends. The masses of string and pulley are negligible. When the system is released, its centre of mass with what acceleration ?
1) zero
2) $-g / 4$
3) $g / 2$
4) $-g / 2$
74. A uniform rod of length $/$ and mass $m$ is free to rotate in a vertical plane about $A$. The rod
initially in horizontal position is released. The initial angular acceleration of the rod is (Moment of inertia of rod about $A$ is $\left(m R^{2} / 3\right)$ ) :

1) $3 g / 2 /$
2) $2 / / 3 \mathrm{~g}$
3) $3 g / 2 p$
4) $\mathrm{mg}(/ / 2)$
75. Suppose the law of gravitational attraction suddenly changes and becomes an inverse cube law, i.e., $F \propto\left(1 / r^{3}\right)$, but still remaining a central force. Then :
1) Kepler's law of areas still holds
2) Kepler's law of periods still holds
3) Kepler's law of areas and periods still holds
4) neither the law of areas, nor the law of periods still holds
76. Water rises in a vertical capillary tube up to a height of 2.0 cm . If the tube is inclined at an angle of $60^{\circ}$ with the vertical, then upto what length the water will rise in the tube ?
1) 2.0 cm
2) 4.0 cm
3) $4 / \sqrt{ }(3) \mathrm{cm}$
4) $2 \sqrt{ } 2 \mathrm{~cm}$
77. A particle of mass $m$ is under the influence of a force $F$ which varies with the displacement x according to the relation $\mathrm{F}=-\mathrm{kx}+f_{0}$ in which k and $f_{0}$ are constants. The particle when disturbed will oscillate about:
1) $x=0$ with $\omega \neq \sqrt{ }(k / m)$
2) $x=0$ with $\omega=\sqrt{ }(k / m)$
3) $x=f_{0} / k$ with $\omega=\sqrt{ }(k / m)$
4) $x=f_{0} / k$ with $\omega \neq \sqrt{ }(k / m)$
78. A pan with set of weights is attached with a light spring. When disturbed, the mass-spring system oscillates with a time period 0.6 s . When some additional weights are added, then time period is 0.7 s . The extension caused by the additional weights is approximately given by :
1) 1.38 cm
2) 3.3 cm
3) 1.75 cm
4) 2.45 cm
79. Two waves represented by the following equations are travelling in the same medium
$y_{1}=5 \sin 2 \pi(75 t-25 x)$
$y_{2}=10 \sin 2 \pi(150 t-50 x)$
The intensity ratio $I_{1} / l_{2}$ of the two waves is :
1) $1: 2$
2) $1: 4$
3) $1: 8$
4) $1: 16$
80. A source of sound placed at the open end of a resonance column sends an acoustic wave of pressure amplitude $\mathrm{P}_{0}$ inside the tube. If the atmospheric pressure is $\mathrm{P}_{\mathrm{A}}$, then the ratio of maximum and minimum pressure at the closed end of the tube will be :
1) $\left(P_{A}+P_{0}\right) /\left(P_{A}-P_{0}\right)$
2) $\left(P_{A}+P_{0}\right)\left(P_{A}-2 P_{0}\right)$
3) $P_{A}, P_{A}$
4) $\left(\mathrm{P}_{\mathrm{A}}+\frac{1}{2} \mathrm{P}_{0}\right)\left(\mathrm{P}_{\mathrm{A}}-\frac{1}{2} \mathrm{P}_{0}\right)$
81. Two sources $S_{1}$ and $S_{2}$ each emitting waves of wavelength are kept symmetrically on either side of centre $O$ of a circle $A B C D$ such that $S_{1} O=S_{2} O=1.5 \lambda$. If a detector is

1) 8
2) 12
3) 16
4) 10
82. An ideal gas expands in such a manner that its pressure and volume comply with the condition $\mathrm{PV}^{2}=$ constant. During this process, the gas is :
1) heated
2) cooled
3) neither heated nor cooled
4) first heated and then of a cooled
83. Energy of all molecules of a monoatomic gas having a volume $V$ and pressure $P$ is $(3 / 2)$ PV. The total translational kinetic energy of all molecules of a diatomic gas at the same volume and pressure, is :
1) $(1 / 2) \mathrm{PV}$
2) $(3 / 2) \mathrm{PV}$
3) $(3 / 2) \mathrm{PV}$
4) $(5 / 2) \mathrm{PV}$
5) 3 PV
84. Three rods of the same dimensions have thermal conductivities $3 \mathrm{~K}, 2 \mathrm{~K}$ and K . They are arranged as shown in figure with their ends at $100^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. The temperature of their junction is :

1) $60^{\circ}$
2) $70^{\circ}$
3) $50^{\circ}$
4) $35^{\circ}$
85. An electron moving in a circular orbit of radius r makes n revolutions per second. As a result the magnetic field produced at the centre is :
1) $B=\mu_{0} n e / 2 \pi r$
2) $B=\mu_{0} n^{2} e / 2 r$
3) $B=\mu_{0} n e / 2 r$
4) $B=0$
86. A concave mirror of radius of curvature 1 m is placed at the bottom of a tank of water. The mirror forms an image of the sun, when it is directly overhead. Calculate the distance of the image from the mirror for 80 cm of water in the tank :
1) 30 cm
2) 50 cm
3) 40 cm
4) 10 cm
87. A ray PQ incident on the refracting face BA is refracted in the prism $B A C$ as shown in the figure and emerges from the other refracting face $A C$ as $R S$, such that $A Q=A R$. If the angle of prism $A=60^{\circ}$ and the refractive index of the material of prism is $\sqrt{ }(3)$, then the angle of deviation of the ray is :

1) $60^{\circ}$
2) $45^{\circ}$
3) $30^{\circ}$
4) none of these
88. When an object is moved along the axis of a convex lens, the size of image is obtained half times the size of the object. When the object is at a distance $d_{1}$ or at a distance $d_{2}$ from the lens, then the focal length of the lens is :
1) $\sqrt{ }\left(d_{1} d_{2}\right)$
2) $d_{2} / d_{1}$
3) $(1 / 2)\left(d_{1}+d_{2}\right)$
4) $(1 / 2)\left(d_{1}-d_{2}\right)$
89. In a Galilean telescope, the inverted image formed by its objective serves as a virtual object for its eyepiece. If the eyepiece has to form an inverted and magnified image of the virtual object, the eyepiece has to be a concave lens and it must be so placed that the virtual object falls :
1) within $F$
2) between $F$ and $2 F$
3) at 2 F
4) beyond 2 F
90. In Fraunhofer diffraction pattern due to narrow slit a screen is placed $2 m$ away from the lens to obtain the pattern. If the slit width is 0.2 mm on either sides of the central maximum, the wavelength of light used is :
1) $5000 \AA$
2) $2000 \AA$
3) $1500 \AA$
4) $1000 \AA$
91. In an electromagnetic field, the amplitude of magnetic field is $3 \times 10^{-10} \mathrm{~T}$. If the frequency of the wave is $10^{12} \mathrm{~Hz}$, then the amplitude of the associated electric field will be :
1) $9 \times 10^{-2} \mathrm{~V} / \mathrm{m}$
2) $3 \times 10^{-2} \mathrm{~V} / \mathrm{m}$
3) $3 \times 10^{-10} \mathrm{~V} / \mathrm{m}$
4) $9 \mathrm{~V} / \mathrm{m}$
92. The centre of a circular table has radius $r$. The illuminance at the centre of the table is eight times that at its circumference. The height of the lamp above the table is :
1) $r$
2) $r / \sqrt{2}$
3) $r / \sqrt{3}$
4) $r / \sqrt{7}$
93. The spectral lines of Lyman series lie in which region of the spectrum?
1) Ultraviolet
2) Visible
3) Near infrared
4) Far infrared
94. For an atom, the energy level corresponding to ground state is $E_{1}$, the metastable state is $\mathrm{E}_{2}$ and an excited state above the metastable state is $\mathrm{E}_{3}$. If the number of atoms in these states are $N_{1}, N_{2}$ and $N_{3}$ respectively, then in relation to laser action, the population inversion means that :
1) $N_{2}<N_{1}$
2) $N_{2}>N_{1}$
3) $N_{3}<N_{2}$
4) $N_{3}>N_{1} 95$. An alpha particle is accelerated through a potential difference of 200 V .

The increase in its
kinetic energy is :

1) 100 eV
2) 200 eV
3) 400 eV
4) 800 eV
96. The rest mass of an electron as well as that of positron is 0.51 MeV . When an electron and positron are annihilated, they produce gamma-rays of wavelength :
1) $0.012 \AA$
2) $0.024 \AA$
3) $0.012 \AA$ to $\infty$
4) $0.024 \AA$ to $\infty$
97. When forward bias is applied to a p-n junction, then what happens to the potential barrier $\mathrm{V}_{\mathrm{B}}$, and the width of charge depleted region x ?
1) $V_{B}$ increases, $x$ decreases
2) $V_{B}$ decreases, $x$ increases
3) $V_{B}$ increases, $x$ increases
4) $V_{B}$ decreases, $x$ decreases
98. Zener breakdown in a semiconductor diode occurs when :
1) forward current exceeds certain value
2) reverse bias exceeds certain value
3) forward bias is equal to certain value
4) potential barrier is reduced to zero
99. A transistor connected in common-emitter configuration has input resistance $R_{C E}=21 \Omega$ and load resistance of 5 K . If $\beta=60$ and an input signal 12 mV is applied. Calculate the voltage gain, the power gain and the value of output voltage are :

1) $A_{V}=150, V_{\text {out }}=1.8 \mathrm{~V}$ and power gain $=9000$
2) $A_{V}=20, V_{\text {out }}=1 \mathrm{~V}$ and power gain $=2000$
3) $A_{V}=150, V_{\text {out }}=1.5 \mathrm{~V}$ and power gain $=8500$
4) $A_{V}=20, V_{\text {out }}=1.5 \mathrm{~V}$ and power gain $=2000$
100. To get an output 1 from the circuit shown in the figure, the input must be :

1) $A=0, B=1, C=0$
2) $A=1, B=0, C=0$
3) $A=1, B=0, C=1$
4) $A=1, B=1, C=0$

## Section-2

## Chemistry

101. The lightest particle is :
1) $\alpha$-particle
2) positron
3) proton
4) neutron
102. In a gaseous reversible reaction
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}+$ heat
If pressure is increased then the equilibrium constant would be :
1) unchanged
2) increased
3) decreased
4) sometimes increased sometimes decreased
103. Bohr model can explain :
1) the solar spectrum
2) the spectrum of hydrogen molecule
3) spectrum of any atom or ion containing one electron only
4) the spectrum of hydrogen atom only
104. Gamma rays have :
1) no mass and no charge
2) mass only
3) charge only
4) mass and charge both
105. Zeeman effect refers to the :
1) splitting up of the lines in an emission spectrum in the presence of an external electrostatic field
2) random scattering of light by colloidal particles
3) splitting up of the lines in an emission spectrum in a magnetic field
4) emission of electrons from metals when light falls upon them
106. Correct gas equation is :
1) 
2) $\frac{P_{1} T_{1}}{V_{1}}=\frac{P_{2} T_{2}}{V_{2}}$
3) $\frac{V_{1} T_{2}}{P_{1}}=\frac{V_{2} T_{1}}{P_{2}}$
4) $\frac{P_{1} V_{1}}{P_{2} V_{2}}=\frac{T_{1}}{T_{2}}$
$\frac{V_{1} V_{2}}{T}=P_{1} P_{2}$
107. Whfaht combinations of quantum numbers, $n, I, m$ and $s$ for the electron in an atom does not provide a permissible solution of the wave equation?
1) $3,2,1,(1 / 2)$
2) $3,1,1,-(1 / 2)$
3) $3,3,1,-(1 / 2)$
4) $3,2,-2,(1 / 2)$
108. $\mathrm{Ca}^{2+}$ is isoelectronic with :
1) $\mathrm{Na}^{+}$
2) Ar
3) $\mathrm{Mg}^{2+}$
4) Kr
109. Which element is used for making a transistor ?
1) Sn
2) Sb
3) Si
4) Mg
110. The rate constant for a first order reaction whose half-life, is 480 s is :
1) $2.88 \times 10^{-3} \mathrm{~s}^{-1}$
2) $2.72 \times 10^{-3} \mathrm{~s}^{-1}$
3) $1.44 \times 10^{-3} \mathrm{~s}^{-1}$
4) $1.44 \mathrm{~s} \mathrm{o}^{-1}$
111. For the following homogeneous reaction, the unit of rate constant is :
$\mathrm{A}+\mathrm{B} \xrightarrow{k}$
C
1) $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$
2) $\mathrm{s}^{-1}$
3) $s$
4) $\mathrm{s}^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
112. A sample of rock from moon contains equal number of atoms of uranium and lead.
$\mathrm{t}_{1 / 2}$
for $U=4.5 \times 10^{9} \mathrm{yr}$. The age of the rock would be :
1) $2.25 \times 10^{9} \mathrm{yr}$
2) $13.5 \times 10^{9} \mathrm{yr}$
3) $9.0 \times 10^{9} \mathrm{yr}$
4) $4.5 \times 10^{9} \mathrm{yr}$
113. The half-life period of a radioactive material is 15 min . What per cent of radioactivity of that material will remain after 45 min ?
1) $17.5 \%$
2) $15 \%$
3) $12.5 \%$
4) $10 \%$
114. In terms of energy 1 amu is equal to :
1) 100 J
2) 931.1 kcal
3) 931.1 MeV
4) $10^{7} \mathrm{erg}$
115. A biological catalyst is :
1) the $\mathrm{N}_{2}$ molecule
2) an enzyme
116. The action of enzymes in living system is to:
1) supply energy to tissues
2) create immunity
3) circulate oxygen
4) enhance the rate of biochemical reactions
117. Amongst the following, the molecule that is linear is:
1) $\mathrm{SO}_{2}$
2) $\mathrm{CO}_{2}$
3) $\mathrm{ClO}_{2}$
4) $\mathrm{NO}_{2}$
118. The hydrogen bond is strongest in:
1) $\mathrm{F}-\mathrm{H} . . . . \mathrm{O}$
2) $\mathrm{F}-\mathrm{H} . \ldots . \mathrm{F}$
3) $\mathrm{S}-\mathrm{H} . . . . \mathrm{S}$
4) $\mathrm{O}-\mathrm{H} . . . . \mathrm{O}$
119. Dipole moment is shown by:
1) cis-1, 2-dichloro ethene
2) trans-1, 2-dichloro ethene
3) trans-1, 2-dichloro-2-pentene
4) both (1) and (3)
120. The compound 1, 2-butadiene has:
1) $s p, s p^{2}$ and $s p^{3}$-hybridised carbon atoms
2) only $\mathrm{sp}^{2}$-hybridised carbon atoms
3) only sp-hybridised carbon atoms
4) both sp and $\mathrm{sp}^{2}$-hybridised carbon atoms
121. The $\mathrm{C}-\mathrm{H}$ bond distance is the longest in :
1) $\mathrm{C}_{2} \mathrm{H}_{6}$
2) $\mathrm{C}_{2} \mathrm{H}_{2}$
3) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$
4) $\mathrm{C}_{2} \mathrm{H}_{4}$
122. Which one of the following solutions has the highest B.P.?
1) 0.1 M NaCl
2) 0.1 M urea
3) $0.1 \mathrm{M} \mathrm{BaCl}_{2}$
4) 0.1 M glucose
123. The freezing point of $1 \%$ solution of lead nitrate in water will be :
1) $2^{\circ} \mathrm{C}$
2) $1^{\circ} \mathrm{C}$
3) $0^{\circ} \mathrm{C}$
4) below $0^{\circ} \mathrm{C}$
124. The amount of urea to be dissolved in 500 cc of water $\left(\mathrm{k}=1.86^{\circ} \mathrm{C}\right)$ to produce a depression of $0.186^{\circ} \mathrm{C}$ in the freezing point is :
1) 9 g
2) 9 g
3) 3 g
4) 0.3 g
125. The solubility of AgI in Val solution is less than that in pure water because :
1) the temperature of the solution decreases
2) solubility product of Agl is less than that of Nal
3) of common ion effect
4) Ag forms complex with Nal
126. Which is chemically most active non-metal ?
1) $S$
2) $\mathrm{O}_{2}$
3) $F_{2}$
4) $\mathrm{N}_{2}$
127. Which one of the given transition metal ions is diamagnetic?
1) $\mathrm{Cu}^{2+}$
2) $\mathrm{Co}^{2+}$
3) $\mathrm{Cr}^{3+}$
4) $\mathrm{Zn}^{2+}$
128. Which of the following isoelectronic species has the largest size ?
1) $\mathrm{Na}^{+}$
2) $\mathrm{O}^{2-}$
3) $\mathrm{N}^{3-}$
4) $\mathrm{F}^{-}$
129. Molecular formula of Glauber's salt is :
1) $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
4) $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
130. Cyanide process is used for the extraction of :
1) Au
2) Ag
3) Cu
4) both (1) and (2)
131. Which of the following metal is correctly matched with its ore ?

|  | Metal | Ore |
| :--- | :--- | :--- |
| (a) | Zinc | Calamine |
| (b) | Silver | Ilmenite |
|  | (c) | Magnesium |
|  | Cassiterite |  |
|  | (d) | Tin |

1) (a)
2) (b)
3) (c)
4) (d)
132. An example of a Lewis acid is :
1) $\mathrm{MgCl}_{2}$
2) $\mathrm{SnCl}_{4}$
3) $\mathrm{AlCl}_{3}$
4) NaCl
133. Which solution has pH equal to 10 ?
1) $10^{-4} \mathrm{M} \mathrm{KOH}$
2) $10^{-10} \mathrm{M} \mathrm{KOH}$
3) $10^{-10} \mathrm{M} \mathrm{HCl}$
4) $10^{-4} \mathrm{M} \mathrm{HCl}$
134. Solubility product of $\mathrm{BaCl}_{2}$ is $4 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$. Its solubility would be
1) $1 \times 10^{-27}$
2) $1 \times 10^{-3}$
3) $1 \times 10^{-7}$
4) $1 \times 10^{-2}$
5) Mosley
6) Mulliken
7) Werner
136. In methane the bond angle is :
1) $180^{\circ}$
2) $90^{\circ}$
3) $109^{\circ}$
4) $120^{\circ}$
137. Oxidation number of ' N ' in $\mathrm{N}_{3} \mathrm{H}$ (hydrazoic acid) is :
1) $-(1 / 3)$
2) +3
3) 0
4) -3
138. Phosphorus has the oxidation state of +3 in :
1) phosphorous acid
2) pyrophosphoric acid
3) orthophosphoric acid
4) metaphosphoric acid
139. Which of the following has highest pH ?
1) $(\mathrm{M} / 4) \mathrm{KOH}$
2) $(\mathrm{M} / 4) \mathrm{NaOH}$
3) $(\mathrm{M} / 4) \mathrm{NH}_{4} \mathrm{OH}$
4) $(\mathrm{M} / 4) \mathrm{Ca}(\mathrm{OH})_{2}$
140. The heat of neutralisation of HCl by NaOH is $-55.9 \mathrm{~kJ} / \mathrm{mol}$, the energy of dissociation of HCN is :
1) 43.8 kJ
2) -43.8 kJ
3) -68 kJ
4) 68 kJ
141. Bronze is an alloy of :
1) $\mathrm{Pb}+\mathrm{Sn}+\mathrm{Zn}$
2) $\mathrm{Cu}+\mathrm{Sn}$
3) $\mathrm{Pb}+\mathrm{Zn}$
4) $\mathrm{Cu}+\mathrm{Zn}$
142. In photography we use :
1) Agl
2) $\mathrm{NH}_{3}$
3) AgCl
4) AgBr
143. The treatement of Cu with dilute $\mathrm{HNO}_{3}$ gives :
1) $\mathrm{N}_{2} \mathrm{O}$
2) NO
3) $\mathrm{NH}_{4}{ }^{+}$
4) $\mathrm{NO}_{2}$
144. A mixture of camphor and benzoic acid can be separated by :
1) sublimation
2) extraction with a solvent
3) chemical method
4) fractional crystallisation
145. The empirical formula of a compound is $\mathrm{CH}_{2}$. One mole of this compound has a mass of
42 g . It molecular formula is :
1) $\mathrm{C}_{3} \mathrm{H}_{6}$
2) $\mathrm{C}_{3} \mathrm{H}_{8}$
3) $\mathrm{CH}_{2}$
4) $\mathrm{C}_{2} \mathrm{H}_{2}$
146. How many isomers are possible for the alkane $\mathrm{C}_{4} \mathrm{H}_{10}$
?
1) 3
2) 5
3) 2
4) 4
147. Geometrical isomerism is possible in case of :
1) pentene-2
2) propane
3) pentane
4) ethene
148. The wrong IUPAC name of the compound $\mathrm{CH}_{3} \mathrm{CHOH} \cdot \mathrm{CH}_{2} \mathrm{CH}_{3}$ is?
1) Butan-2-ol
2) 2-butanol
3) Butanol-2
4) 1-methylpropanol-1
150. The number of ether isomers possible for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ are :
1) 2
2) 5
3) 4
4) 3
151. Keto-enol tautomerism is observed in :
1) 


2)

3)


4) Both (1) and (2)
152. Which of the following compounds will show geometrical isomerism ?

1) 1-phenyl propene
2) Propene
3) 2-methyl-2-butene
4) 2-butene
153. The number of primary amines of formula $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$ is :
1) 1
2) 3
3) 4
4) 2
154. Lyophobic colloids are :
1) gun proteins
2) protective colloids
3) irreversible colloids
4) reversible colloids
155. White vitriol has the formula:
1) $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
4) $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
156. The decomposition temperature is maximum for :
1) $\mathrm{MgCO}_{3}$
2) $\mathrm{SrCO}_{3}$
3) $\mathrm{CaCO}_{3}$
4) $\mathrm{BaCO}_{3}$
157. What is the molarity of $0.2 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution?
1) 0.05 M
2) 0.4 M
3) 0.1 M
4) 0.2 M
158. The strength of 10 cc of " 10 volume" solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ in terms of normality is :
1) 6.8 N
2) 1.7857 N
3) 4.4 N
4) 30.35 N
159. Zeolite which shows ion exchanging ability :
1) can provide $\mathrm{H}^{+}$in place of $\mathrm{Na}^{+}$ions
2) is a sodium aluminosilicate

3 ) is an ion-exchange resin
4) is a close-packed assemblance of silicon and oxygen atoms
160. Which of the following is an electrophile ?

1) Lewis acid
2) Lewis base
3) Negative species
4) None of the above
161. Strongest acid is :
1) 2, 4, 6-trinitro phenol
2) ethanol
3) ether
4) phenol
162. Which one of the following species is isoelectronic with ammonia?
1)..$_{\mathrm{C}} \mathrm{H}_{2}$
2) 


3) $-\mathrm{H}_{3}$
4) $\mathrm{CH}_{2}$
163. The addition of HBr is easiest with :

1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
2) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
3) $\mathrm{ClCH}=\mathrm{CHCl}$
4) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$
164. Dry ice is :
1) solid ice
2) solid $\mathrm{CO}_{2}$
3) solid $\mathrm{NH}_{3}$
4) solid $\mathrm{CH}_{4}$
165. When potassium ferrocyanide crystals are heated with conc. sulphuric acid, the gas evolved is :
1) sulphur dioxide
2) ammonia
3) carbon monoxide
4) carbondioxide
166. Potassium cyanide is obtained from :
1) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
2) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
3) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]$
4) none of the above
167. Ammonia on reaction with hypochlorite anion can form :
1) NO
2) $\mathrm{N}_{2} \mathrm{H}_{4}$
3) $\mathrm{NH}_{4} \mathrm{Cl}$
4) both (2) and (3)
168. On heating sodium acetate with sodium hydroxide, the gas evolved will be :
1) ethylene
2) methane
3) acetylene
4) ethane
169. Calcium carbide when treated with water gives :
1) ethylene
2) methane
3) acetylene
4) ethane
170. Natural gas is a mixture of :
1) $\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{C}_{3} \mathrm{H}_{8}$
2) $\mathrm{CO}+\mathrm{H}_{2}+\mathrm{CH}_{4}$
3) $\mathrm{CO}+\mathrm{H}_{2}$
4) $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
171. At $130^{\circ} \mathrm{C}$, normal butane reacts with bromine, the product will be :
1) 


2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{Br}$
3)

4) all of the above
172. HOCl reacts on 3-methyl-2-pentene, the main product will be :

1) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}-\mathrm{CHOH}-\mathrm{CH}_{3}$

2) 


3)

4) none of the above
173. An alkyne has the general formula :

1) $\mathrm{C}_{n} \mathrm{H}_{2 n}$
2) $\mathrm{C}_{n} \mathrm{H}_{2 n+1}$
3) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
4) $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
174. In the
reaction

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}^{-}-\mathrm{Na}^{+}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl} \rightarrow \text { ? }
$$

The product formed is :

1) propene
2) propyne
3) propyne and propene
4) 4-methyl pentyne-2
175. Which of the following metal ions is not coloured?
1) $\mathrm{Ti}^{3+}$
2) $\mathrm{Fe}^{3+}$
3) $\mathrm{V}^{2+}$
4) $\mathrm{Cu}^{+}$
176. Which has maximum paramagnetic nature?
1) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
2) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
3) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
4) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
177. Lucas test is done to differentiate between:
1) alcohol and ketone
2) alcohol and aromatic ketones
3) $1^{\circ}, 2^{\circ}$ and $3^{\circ}$ alcohols
4) none of the above
178. Phenol is more acidic than alcohol. Why?
1) Phenol is more stable than water
2) Phenol is aromatic and alcohol is aliphatic
3) Phenol is resonance stabilised
4) None of the above
179. Aldehyde and ketones are distinguished by which of the following test?
1) Lucas test
2) Tollen's test
3) $\mathrm{KMnO}_{4}$ solution (Bayer's test)
4) None of the above
180. Aldehydes and ketones are generally reduced by :
1) Clemmensen reduction
2) $\mathrm{H}_{2} \mathrm{~S}$
3) $\mathrm{H}_{2} / \mathrm{Ni}$
4) none of the above
181. Which one gives positive iodoform test?
1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$
2) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}$
3) H

4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
182. What is the meaning of $o / p$ directing group ?
1) A group which increases the electron density at m-position
2) No reaction occur at o/p position
3) A group which increases the electron density at $o / p$ positions when attached to benzene ring and direct the electrophile to this site
4) None of the above
183. $\mathrm{CH}_{3} \mathrm{COOH}$ $\xrightarrow{A} \mathrm{CH}_{3} \mathrm{COCl}$. What is A ?
1) $\mathrm{PCl}_{5}$
2) $\mathrm{Cl}_{2}$
3) HCl
4) COCl
184. Cyclohexene on reaction with cold alkaline $\mathrm{KMnO}_{4}$ form :
1) trans-hexanediol
2) hexadiketone
3) cis-hexanediol
4) none of these
185. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ on ozonolysis give :
1) $\mathrm{O}_{2}$
2) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
3) $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$
4) $\mathrm{CH}_{3}-\mathrm{CHO}$
186. Which is monosaccharide?
1) Sucrose
2) Lactose
3) Fructose
4) None of these
187. In which reaction, $>\mathrm{C}=\mathrm{O}$ can be reduced to $>\mathrm{CH}_{2}$ ?
1) Wolff-Kishner reaction
2) Reimer-Tiemann reaction
3) Wurtz reaction
4) None of the above
188. Phenol on reaction with Zn dust form :
1) $\mathrm{ZnO}+$ benzene
2) toluene
3) benzaldehyde
4) benzoic acid
189. Phenol on reaction with chloroform and aqueous KOH form a major product :
1) 


2)

3)

4)

190. Resonance energy of benzene represents :

1) stability of benzene
2) energy required to break C-C bond
3) energy required to break $\mathrm{C}-\mathrm{H}$ bond
4) energy for

191. Two structures of cyclohexatriene given by Kekule represent :
1) an equilibrium mixture of two cyclohexatriene
2) an equal mixture of two isomer
3) a structure which has some resemblence with benzene structure
4) none of the above
192. In $\mathrm{Ni}(\mathrm{CO})_{4}$ oxidation number of Ni is :
1) 4
2) -4
3) 0
4) +2
193. Ethyl acetate on reaction with Grignard's reagent, forms :
1) alcohol
2) ketone
3) ether
4) hydrocarbon
194. LPG mainly contains :
1) ethyne
2) butane
3) methane
4) ethane
195. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is a :
1) double salt
2) complex compound
3) acid
4) base
196. Write the following in decreasing order towards electrophilic substitution reaction :
197. benzene
198. chlorobenzene
199. nitrobenzene
200. toluene
1) $1>2>3>4$
2) $4>1>2>3$
3) $2>3>4>1$
4) $2>1>4>3$
197. IUPAC name of $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$ is :
1) pent-2-ene-4-yne
2) pent-1-yne-3-ene
3) pent-3-ene-1-yne
4) none of the above
198. Name of the following compound is:

1) 2-ethyl butanol-2
2) 1-ethyl, 1-methyl propanol-1
3) 3-methyl pentanol-3
4) diethyl ethanol
199. Number of unpaired electrons in $\mathrm{Ni}^{2+}(28)$ is
3) 6
4) 8
200. Which of the following have polyamide structure?
1) Bakelite
2) Nylon-6, 6
3) PVC
4) None of these

## Section-3

## Mathematics

201. 

The value of $\sqrt{2+\sqrt{2+\sqrt{2+\ldots \infty}}}$ is equal to:

1) 5
2) 3
3) 2
4) none of these
202. If $3^{x}-3^{x-1}=6$, then $x^{x}$ is equal to
1) 2
2) 4
3) 9
4) none of these
203. 

The determinant $\left|\begin{array}{ccc}a & b & a-b \\ b & c & b-c \\ 2 & 1 & 0\end{array}\right|$ is equal to zero, if $a, b, c$ are in :

1) $G P$
2) $A P$
3) HP
4) none of these
204. The value of
$\left(1+\omega^{2}+2 \omega\right)^{3 n}-\left(1+\omega+2 \omega^{2}\right)^{3 n}$ is
:
1) zero
2) 1
3) $\omega$
4) $\omega^{2}$
205. The value of $i^{1 / 3}$ is :
1) $(\sqrt{ }(3)+i) / 2$
2) $(\sqrt{ }(3)-i) / 2$
3) $(1+i \sqrt{ } 3) / 2$
4) $(1-i \sqrt{ } 3) / 2$
206. 

$$
\left(\frac{1+\mathrm{i} \sqrt{3}}{1-\mathrm{i} \sqrt{3}}\right)^{\mathrm{n}} \text { is an integer, is : }
$$

1) 1
2) 2
3) 3
4) 4
207. If $A=\left[\begin{array}{ll}-2 & 6 \\ -5 & 7\end{array}\right]$, then $\operatorname{adj}(A)$ is equal to :
1) $\left[\begin{array}{ll}7 & -6 \\ 5 & -2\end{array}\right]$
2) $\left[\begin{array}{ll}2 & -6 \\ 5 & -7\end{array}\right]$
3) $\left[\begin{array}{ll}7 & -5 \\ 6 & -2\end{array}\right]$
4) none of these
208. 

If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\ldots\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}+\ldots\right)=\frac{\pi}{2}$
for $1<|x|<\sqrt{ }(2)$, then the value of $x$ is :

1) $1 / 2$
2) 1
3) $-1 / 2$
4) none of these
209. If $I=\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$, then the value of $I$ is equal to :
1) $\pi / 2$
2) $\pi / 4$
3) $\pi / 6$
4) none of these
210. If $\sin \theta+\operatorname{cosec} \theta=2$, then $\sin ^{n} \theta+\operatorname{cosec}^{n} \theta$ is equal to :
1) 2
2) $2^{n}$
3) $2^{n-1}$
4) none of these

$$
1+\frac{2}{x}+\frac{4}{x^{2}}+\frac{8}{x^{3}}+\ldots \infty \text { is a finite number, then : }
$$

1) $x<2$
2) $x>2$
3) $x>(1 / 2)$
4) none of these
212. 

The sum of $n$ terms of the

$$
\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\ldots \ldots . \text { is equal to : }
$$

1) $\sqrt{ }(2 n+1)$
2) $\sqrt{ }(2 n+1) / 2$
3) $\sqrt{ }(2 n+1)-1$
4) $(\sqrt{ }(2 n+1)-1) / 2$
213. A person travelling with a velocity $\mathrm{v}_{1}$ for some time and with uniform velocity $\mathrm{v}_{2}$ for the next equal time. The average velocity $v$ ' is given by :
1) $v^{\prime}=\frac{v_{1}+v_{2}}{2}$
2) $v^{\prime}=\sqrt{v_{1} v_{2}}$
3) $\frac{2}{v^{\prime}}=\frac{1}{v_{1}}+\frac{1}{v_{2}}$
4) $\frac{1}{\mathrm{v}^{\prime}}=\frac{1}{\mathrm{v}_{1}}+\frac{1}{\mathrm{v}_{2}}$
214. In the binomial expansion
$(a+b x)^{-3}=(1 / 8)+(9 / 8) x+\ldots .$. , then the value of $a$ and $b$ are :
1) $a=2, b=3$
2) $a=2, b=-6$
3) $a=3, b=2$
4) $a=-3, b=2$
215. The value of determinant

$$
\left|\begin{array}{ccc}
\left(a^{x}+a^{-x}\right)^{2} & \left(a^{x}-a^{-x}\right)^{2} & 1 \\
\left(b^{x}+b^{-x}\right)^{2} & \left(b^{x}-b^{-x}\right)^{2} & 1 \\
\left(c^{x}+c^{-x}\right)^{2} & \left(c^{x}-c^{-x}\right)^{2} & 1
\end{array}\right| \text {, is : }
$$

1) 0
2) $2 a b c$
3) $a^{2} b^{2} c^{2}$
4) none of these
216. If one root of the equation $x^{2}+p x+q=0$ is $2+\sqrt{3}$, then values of $p$ and $q$ are :
1) $-4,1$
2) $4,-1$
3) $2, \sqrt{ } 3$
4) $-2,-\sqrt{ } 3$
217. If $x$ is real, then value of the expression $\frac{x^{2}+14 x+9}{x^{2}+2 x+3}$ lies between :
1) 5 and 4
2) 5 and -4
3) -5 and 4
4) none of these
218. The coefficient of $x^{4}$ in the expansion of $\left(\frac{x}{2}-\frac{3}{x^{2}}\right)^{10}$ is equal to :
1) $405 / 256$
2) $504 / 259$
3) $450 / 263$
4) none of these
219. $2 \tan ^{-1}(\cos x)=\tan ^{-1}\left(\operatorname{cosec}^{2} x\right)$, then $x$ is equal to :
1) $\pi / 2$
2) $\pi$
3) $\pi / 6$
4) $\pi / 3$
220. Period of $\sin ^{2} \mathrm{x}$ is equal to :
1) $\pi$
2) $2 \pi$
3) $\pi / 2$
4) none of these
221. If $\int \sqrt{ } 2 \sqrt{ }(1+\sin x) d x=-4 \cos (a x+b)+c$, then the value of $(a, b)$ is equal to :
1) $(1 / 2),(\pi / 4)$
2) $1,(\pi / 2)$
3) 1,1
4) none of these
222. Among 15 players, 8 are batsmen and 7 are bowlers. The probability that a team is chosen of 6 batsmen and 6 bowlers, is :
1) $\left(\left({ }^{8} \mathrm{C}_{6} \times{ }^{7} \mathrm{C}_{5}\right) /{ }^{15} \mathrm{C}_{11}\right)$
2) $28 / 15$
3) $15 / 28$
4) none of these
223. In the expansion of $(1+x)^{n}$, coefficients of $2 n d$, 3 rd and 4 th terms are in AP. Then, $n$ is equal to :
1) 7
2) 9
3) 11
4) none of these
224. 

The degree and order of the equation

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{-3 / 2}=k\left(\frac{d^{2} y}{d x^{2}}\right) \text { is : }
$$

1) $(2,2)$
2) $(3,2)$
3) $(2,3)$
4) none of these
225. If $\vec{a}$ and $\vec{b}$ are two unit vectors inclined at an angle $\theta$, then $\sin \theta / 2$ is equal to :
1) 1
2) $1 / 2$
3) $-1 / 2$
4) none of these
226. If $(a / b),(b / c),(c / a)$ are in HP, then :
1) $a^{2} b, c^{2} a, b^{2} c$ are in AP
2) $a^{2} b, b^{2} c, c^{2} a$ are in HP
3) $a^{2} b, b^{2} c, c^{2} a$ are in GP
4) none of the above
227. $\left|\begin{array}{ccc}a & b & (a x+b) / x \\ b & c & b x+c \\ a x+b & b x+c & 0\end{array}\right|=0$, then $a, b, c$ are in :
1) $A P$
2) HP
3) none of these
228. If $x^{2}-5 x+6>0$, then $\epsilon$ :
1) $(-\infty, 2) \cup(3, \infty)$
2) $[2,3]$
3) $(2,3]$
4) none of these
229. If $x>0$ and $x \neq 1, y>0$ and $y \neq 1, z>0$ and $z \neq 1$, then the value of $\left|\begin{array}{ccc}1 & \log _{x} y & \log _{x} z \\ \log _{y} x & 1 & \log _{y} z \\ \log _{z} x & \log _{z} y & 1\end{array}\right|$ is equal to :
1) 1
2) -1
3) zero
4) none of these
230. 

If matrix $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]$ and $A^{-1}=\frac{1}{k} \operatorname{adj}(A)$, then $k$ is equal to :

1) 7
2) -7
3) 15
4) 

11
231. The projection of the vector $\hat{\imath}-2 \hat{\jmath}+\hat{\mathrm{k}}$ on the vector $4 \hat{\imath}-4 \hat{\jmath}+\begin{gathered}\hat{\mathrm{k}} \\ 7\end{gathered}$ is equal to :

1) $5 \sqrt{ }(6) / 10$
2) $19 / 9$
3) $9 / 19$
4) $\mathfrak{a}$ (6)/19
$\hat{k} \quad \vec{b}$
$\hat{k} \quad \vec{a} \quad \vec{b}$
232. If $=2 \hat{\imath}+4 \hat{\jmath}-5$

$$
\text { and } \quad=\hat{\imath}+2 \hat{\jmath}+3
$$


equal to :

1) $5 \sqrt{ } 3$
2) $5 \sqrt{ } 2$
3) $25 \sqrt{ } 3$
4) $25 \sqrt{ } 2$
234. The most general solution of $\tan \theta=-1$ and $\cos \theta=(1 / \sqrt{ } 2)$ is
1) $n \pi+(7 \pi / 4)$
2) $n \pi+(-1)^{n}(7 \pi / 4)$
3) $2 n \pi+(7 \pi / 4)$
4) none of these
235. The value $\int_{0}^{\pi} \frac{x \tan x d x}{\sec x+\cos x}$
of $d x$ is equal to :
1) $\pi^{2 / 4}$
2) $\pi^{2} / 2$
3) $3 \pi^{2} / 2$
4) $\pi^{2} / 3$
236. 

$y=e^{x+e^{x+e^{x}+\ldots \infty}}, \frac{d y}{d x}$ is equal to :

1) $x /(1-x)$
2) $y /(1+y)$
3) $y /(1-y)$
4) $(1-y) / y$
237. $\lim _{x \rightarrow 0} \frac{\cos 2 x^{3}-1}{\sin ^{6} 2 x}$ is equal to
1) $(1 / 16)$
2) $-(1 / 16)$
3) $(1 / 32)$
4) $-(1 / 32)$
238. If $x=a \sin \theta$ and $y=b \cos \theta$, then $\left(d^{2} y / d x^{2}\right)$ is equal to :
1) $\left(a / b^{2}\right) \sec ^{2} \theta$
2) $-(b / a) \sec ^{2} \theta$
3) $-\left(b / a^{2}\right) \sec ^{3} \theta$
4) $\left(b / a^{2}\right) \sec ^{3} \theta$
239. Differential equation of $y=\sec \left(\tan ^{-1} x\right)$ is :
1) $\left(1+x^{2}\right)(d y / d x)=y+x$
2) $\left(1+x^{2}\right)(d y / d x)=y-x$
3) $\left(1+x^{2}\right)(d y / d x)=x y$
240. If ' $H$ ' is the harmonic mean between $P$ and $Q$, then $(H / P)+(H / Q)$ is :
1) 2
2) $(P Q /(P+Q))$
3) $((P+Q) / P Q)$
4) none of these
241. If $\frac{\tan 3 x-\tan 2 x}{1+\tan 3 x \tan 2 x}=1$, then $x$ is equal to :
1) $\phi$
2) $\pi / 4$
3) $[n \pi+(\pi / 4), n=1,2,3, \ldots$.
4) $[2 n \pi+(\pi / 4), n=1,2,3, \ldots$.
242. The value of $2\left(\sin ^{6} \theta+\cos ^{6} \theta\right)-3\left(\sin ^{4} \theta+\cos ^{4} \theta\right)+1$ is equal to :
1) 2
2) zero
3) 4
4) 6
243. If $u_{n}=\int_{0}^{\pi / 4} \tan ^{n} \theta d \theta$, then $u_{n}+u_{n-2}$ is equal to :
1) $(1 /(n-1))$
2) $(1 /(n+1))$
3) $(1 /(2 n-1))$
4) $(1 /(2 n+1))$
244. The equation of the normal to the hyperbola $\left(x^{2} / 16\right)-\left(y^{2} / 9\right)=1$ at $(-4,0)$ is :
1) $y=0$
2) $y=x$
3) $x=0$
4) $x=-y$
245. $\int \frac{\mathrm{xdx}}{1+\mathrm{x}^{4}}$ is equal to :
1) $\log \left(1+x^{2}\right)+c$
2) $\tan ^{-1} x^{2}+c$
3) $(1 / 2) \tan ^{-1} x^{2}+c$
4) none of these
246. The value of

$$
\left(\frac{a-b}{a}\right)+\frac{1}{2}\left(\frac{a-b}{a}\right)^{2}+\frac{1}{3}\left(\frac{a-b}{a}\right)^{3}+\cdots \infty
$$

1) $\log (b / a)$
2) $\log a-\log b$
3) $\log a+\log b$
4) none of these
247. If $y=a \log x+b x^{2}+x$ has its extremum value at $x=1$ and $x=2$, then $(a, b)$ is :
1) $(1,(1 / 2))$
2) $((1 / 2), 2)$
3) $(2,-(1 / 2))$
4) $(-(2 / 3),-(1 / 6))$
248. $y^{2}+x y+P x^{2}-x-2 y+P=0$ represent two straight lines, if $P$ is equal to :
1) 2
2) $2 / 3$
3) $1 / 4$
4) $1 / 2$
249. 

If $f(x)$ is a differentiable function, then $\lim _{x \rightarrow a} \frac{a f(x)-x f(a)}{x-a}$ is equal to

1) $a f^{\prime}(a)-f(a)$
2) $a f(a)-f^{\prime}(a)$
3) $a f^{\prime}(\mathrm{a})+f(\mathrm{a})$
4) $a f(a)-f^{\prime}(a)$
250. If $z=x+i y$, then the area of a triangle with vertices $z, i z$ and $z+i z$ is equal to :
1) $(3 / 2)|z|^{2}$
2) $|z|^{2}$
3) $(1 / 2)|z|^{2}$
4) $(1 / 4)|z|^{2}$
251. If sets $A$ and $B$ are defined as
$A=\left\{(x, y) ; y=e^{x}, x_{E} R\right\}$,
$B=\{(x, y) ; y=x, x \quad R\}$, then:
1) $B \quad A$
2) $A \subset B$
3) $A \cap B=\varnothing$
4) $A \cup B=A$
252. Number of ways in which 7 men and 7 women can sit on a round table such that no two women sit together are :
1) $(7!)^{2}$
2) $7!\times 6!$
3) $(6!)^{2}$
253. Let $\vec{a}$ and $\vec{b}$ be two equal vectors inclined at an angle $\theta$, then $\sin \theta / 2$ is equal to :
1) $((1 / 2)|\vec{a}-\vec{b}|) /|\vec{a}|$
2) $((1 / 2)|\vec{a}+\vec{b}|) /|\vec{a}|$
3) $|\vec{a}-\vec{b}|$
4) $|\vec{a}+\vec{b}|$
254. The angle of intersection between the curves $x^{2}=4(y+1)$ and $x^{2}=-4(y+1)$ is :
1) $\pi / 6$
2) $\pi / 4$
3) zero
4) $\pi / 2$
255. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5,|\vec{a}+\vec{b}+\vec{c}|=0$, then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to :
1) -20
2) -25
3) 25
4) 50
256. The value of $\int_{0}^{9}[\sqrt{x}+2] d x$ where [.] is the greatest integer function :
1) 31
2) 22
3) 23
4) none of these
257. $\lim _{x \rightarrow 0} \cos \frac{1}{x}$ is :
1) continuous at $x=0$
2) differentiable at $x=0$
3) does not exist
4) none of the above
258. The work done by the force $\overrightarrow{\mathrm{F}}=\hat{\imath}+2 \hat{\jmath}+\hat{\mathrm{k}}$ in displacing an object from $\overrightarrow{\mathrm{r}}_{1}=\hat{\imath}+5 \hat{\jmath}-3 \hat{\mathrm{k}}$ to $\overrightarrow{\mathrm{r}}$ $2=3 \hat{i}+8 \hat{\jmath}-5 \hat{k}$ is equal to :
1) 0 unit
2) 20 unit
3) 15 unit
4) none of these
259. Equation $3 x^{2}+7 x y+2 y^{2}+5 x+5 y+2=0$ represents :
1) a pair of straight lines
2) an ellipse
3) a hyperbola
260. If an angle $\theta$ divided into two parts $A$ and $B$ such that $A-B=k$ and $\tan A: \tan B=k: 1$, then the value of $\sin k$ is :
1) $((k+1) /(k-1)) \sin \theta$
2) $(k /(k+1)) \sin \theta$
3) $((k-1) /(k+1)) \sin \theta$
4) none of these
261. Which is true about matrix multiplication:
1) it is commutative
2) it is associative

3 ) both (1) and (2)
4) none of these
262. Inverse of the function, $y=2 x-3$ is equal to :

1) $(x+3) / 2$
2) $(x-3) / 2$
3) $1 /(2 x-3)$
4) none of these
263. In a right angled triangle, the hypotenuse is four times as long as the perpendicular to it from the opposite vertex, one of the acute angles is:
1) $15^{\circ}$
2) $30^{\circ}$
3) $45^{\circ}$
4) none of these
264. Angle between two curves $x^{2}=4(y+1)$ and $x^{2}=-4(y+1)$ is :
1) 0
2) $90^{\circ}$
3) $60^{\circ}$
4) $30^{\circ}$
265. If the binomial expansion of $(a+b x)^{-2}$ is $(1 / 4)-3 x+\ldots$. , then $(a, b)$ is equal to :
1) $(2,12)$
2) $(2,8)$
3) $(-2,-12)$
4) none of these
266. The range of a projectile fixed at an angle of $15^{\circ}$ is 50 m . If it is fixed with the same speed at an angle of $45^{\circ}$, then the range will be :
1) 50 m
2) 100 m
3) 150 m
4) none of these
267. Matrix $A=\left[\begin{array}{lll}1 & 0 & \mathrm{k} \\ 2 & 1 & 3 \\ \mathrm{k} & 0 & 1\end{array}\right]$ is not invertible for :
1) $k=1$
2) $k=2$
3) $k=0$
4) all real values of k
268. If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then $A^{100}$ is equal to :
1) $2^{100} \mathrm{~A}$
2) $2^{99} \mathrm{~A}$
3) $2^{101} \mathrm{~A}$
4) none of these
269. The probability that the two digit number formed by digits $1,2,3,4,5$ is divisible by 4 , is :
1) $1 / 30$
2) $1 / 20$
3) $1 / 5$
4) none of these
270. Let $f(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x}) f(\mathrm{y}) \forall_{\mathrm{x}, \mathrm{y}} \in_{\mathrm{R}, f(5)=2, f^{\prime}(0)=3 \text {, then } f^{\prime}(5) \text { equals : }}$
1) 4
2) 1
3) $1 / 2$
4) 6
271. A particle is projected down from the top of tower 5 m high and at the same moment another particle is projected upward from the bottom of the tower with a speed of $10 \mathrm{~m} / \mathrm{s}$, meet at a distance ' h ' from the top of tower, then h is equal to :
1) 1.25 m
2) 2.5 m
3) 3 m
4) none of these
272. If a couple is acting on two particles of mass 1 kg attached with a rigid rod of length 4 m , fixed at centre acting at the end and the angular acceleration of system about centre is 1 $\mathrm{rad} / \mathrm{s}^{2}$, then magnitude of force is equal to :
1) 2 N
2) 4 N
3) 1 N
4) none of these
273. The integral factor of expansion $\left(x^{2}+1\right)(d y / d x)+2 x y=x^{2}-1$, is :
1) $x^{2}+1$
2) $2 x /\left(x^{2}+1\right)$
3) $\left(x^{2}-1\right) /\left(x^{2}+1\right)$
4) none of these
274. From a pack of cards, 2 cards are drawn at random one by one with replacement. The probability that the first is heart and second is king, is equal to :
1) $1 / 26$
2) $1 / 52$
3) $1 / 13$
4) $1 / 10$
275. Eccentricity of the curve $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{a}^{2}$ is equal to :
1) 2
2) $\sqrt{ } 2$
3) 4
4) none of these
276. A weight of 10 N is hanged by two ropes as shown in figure, tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are :

1) $5 \mathrm{~N}, 5 \sqrt{ }(3) \mathrm{N}$
2) $5 \sqrt{ }(3) \mathrm{N}, 5 \mathrm{~N}$
3) $5 \mathrm{~N}, 5 \mathrm{~N}$
4) $5 \sqrt{ }(3) \mathrm{N}, 5 \sqrt{ }(3) \mathrm{N}$
277. Let $A$ and $B$ be two events such that $P(A)=0.3, P(A \cup B)=0.8$. If $A$ and $B$ are independent events, then $P(B)$ is equal to :
1) $5 / 7$
2) $5 / 13$
3) $1 / 3$
4) $1 / 2$
278. Two masses are attached to the pulley as shown in figure. Acceleration of centre of mass is:

1) $g / 4$
2) $-g / 4$
3) $g / 2$
4) $-g / 2$
279. A particle is thrown with velocity $u$ at an angle of $30^{\circ}$ from horizontal line, it becomes perpendicular to its original position at time :
1) $u / 2 g$
2) $2 u g$
3) $u \sqrt{ }(3) / g$
4) none of these
280. In the following, one-one function is:
1) $e^{x}$
2) $e x^{2}$
3) $\sin x$
4) none of these
281. The value of $\left(e^{x}-1\right)$ is always :
1) greater than 1 for all real values
2) less than 1 for all real values
3) greater than 1 for some real values
4) none of the above
282. If the force represented by $3 \hat{\jmath}+2$
$\widehat{k}$ is acting through the point $5 \hat{\imath}+4 \hat{\jmath}-3 \hat{\mathbf{k}}$, then its moment about the point $(1,3,1)$ is :
1) $14 \hat{\imath}-8 \hat{\jmath}+12 \hat{k}$
2) $-14 \hat{\imath}+8 \hat{\jmath}-12 \hat{k}$
3) $-6 \hat{\imath}-\hat{\jmath}+9 \hat{k}$
4) $6 \hat{\imath}+\hat{\jmath}-9 \hat{k}$
283. Coefficient of $x^{2}$ in the expansion $\left(x-\frac{1}{2 x}\right)^{8}$ is equal to :
1) $1 / 7$
2) $-1 / 7$
3) -7
4) 7
284. 

If $A=\left[\begin{array}{ll}0 & 3 \\ 2 & 0\end{array}\right]$ and $A^{-1}=\lambda(A)$, then $\lambda$ is equal to :

1) $-(1 / 6)$
2) $(1 / 3)$
3) $-(1 / 3)$
4) $(1 / 6)$
285. Minimum value $\frac{1-x+x^{2}}{1+x+x^{2}}$ for all real ' $x$ ' is equal to :
1) zero
2) $1 / 3$
3) 1
4) 3
286. $[\hat{i} \hat{k} \hat{\jmath}]+[\hat{k} \hat{\jmath} \hat{i}]+[\hat{j} \hat{k} \hat{i}]$ is equal to :
1) -1
2) 3
3) -3
4) -2
287. If $x, 2 x+2,3 x+3$ are in GP, then the fourth term is:
1) 27
2) -27
3) 13.5
4) -13.5
288. If ${ }^{n} C_{12}={ }^{n} C_{8}$, then $n$ is equal to :
1) 20
2) 12
3) 6
4) 30
289. 

If $A=\left[\begin{array}{cc}1 & -2 \\ 3 & 0\end{array}\right], B=\left[\begin{array}{cc}-1 & 4 \\ 2 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, then $5 A-3 B+2 C$ is equal to :

1) $\left[\begin{array}{cc}8 & 20 \\ 7 & 9\end{array}\right]$
2) $\left[\begin{array}{cc}8 & -20 \\ 7 & -9\end{array}\right]$
3) $\left[\begin{array}{cc}-8 & 20 \\ -7 & 9\end{array}\right]$
4) $\left[\begin{array}{cc}8 & 7 \\ -20 & -9\end{array}\right]$
290. $\left|\begin{array}{lll}11 & 12 & 13 \\ 12 & 13 & 14 \\ 13 & 14 & 15\end{array}\right|$ is equal to :
1) 1
2) zero
3) -1
4) 67
291. If $y=\sec ^{-1}\left(\frac{x+1}{x-1}\right)+\sin ^{-1}\left(\frac{x-1}{x+1}\right), \frac{d y}{d x}$ is equal to :
1) 1
2) $(x-1) /(x+1)$
3) zero
4) $(x+1) /(x-1)$
292. If $\sin y=x \sin (a+y)$, then $(d y / d x)$ is equal to :
1) 

$\frac{\sin a}{\sin a \sin ^{2}(a+y)}$
2) $\frac{\sin ^{2}(a+y)}{\sin a}$
3) $\sin a \sin ^{2}(a+y)$
4) $\frac{\sin ^{2}(a-y)}{\sin a}$
293. The two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}=2$ :

1) cut at right angle
2) touch each other
3) cut at an angle ( $\pi / 3$ )
4) cut at an angle ( $\pi / 4$ )
294. $\int \frac{\mathrm{dx}}{\mathrm{x}^{2}\left(\mathrm{x}^{4}+1\right)^{3 / 4}}$ is equal to :
1) $\left(1+\frac{1}{x^{4}}\right)^{1 / 4}+c$
2) $\left(x^{4}+1\right)^{1 / 4}+$
3) $\left(1-\frac{1}{x^{4}}\right)^{1 / 4}+c$
$-\left(1+\frac{1}{\mathrm{x}^{4}}\right)^{1 / 4}+\mathrm{c}$
295. 

The value of the integral $\int_{-1 / 2}^{1 / 2} \cos x \log \left(\frac{1+x}{1-x}\right) d x$ is :

1) zero
2) $1 / 2$
3) $-1 / 2$
4) none of these
296. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss equals :
1) $1 / 2$
2) $1 / 32$
3) $31 / 32$
4) $1 / 5$
297. There are four machines and it is known that exactly two of them are faulty. They are tested one by one in a random order till both the faulty machines are identified. Then, the probability that only two tests are needed, is :
1) $1 / 3$
2) $1 / 6$
3) $1 / 2$
4) $1 / 4$
298. If fifth term of an GP is 2 , then the product of its 9 terms is :
1) 256
2) 512
3) 1024
4) none of these
299. If $p$ and $q$ are the roots of the equation $x^{2}+p x+q=0$, then :
1) $p=1$
2) $p=0$ or 1
3) $p=-2$
4) $p=-2$ or zero
300. Let $A$ and $B$ be two finite sets having $m$ and $n$ elements respectively. Then, the total number of mappings from $A$ to $B$ is :
1) mn
2) $2^{m n}$
3) $\mathrm{m}^{\mathrm{n}}$
4) $n^{m}$

## Answer Key



## шш山.questionpaperz.in

