Pandit Deendayal Petroleum University ### Written Aptitude Test for M. Tech. admissions 2016 The Written Aptitude Test (WAT) will be of 02 hours duration, containing the Multiple Choice type questions. Each wrong answer for a 1 mark MCQ will result in a deduction of 0.25 marks. It shall further comprise of two parts, Part-I i.e. General Aptitude - <u>applicable to every candidate</u> irrespective of branch of M. Tech. admission, and Part-II shall be specific to the branch in which the admission is sought. ### Part-I ### General Aptitude (applicable to every candidate of all the branches): #### **Syllabus** **Verbal Ability:** English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction. **Numerical Ability:** Numerical computation, numerical estimation, numerical reasoning and data interpretation. ## Part-II # i) Syllabus for candidates applying for M. Tech. (Electrical Engg. (Power Systems)) #### **ENGINEERING MATHEMATICS** Linear Algebra: Matrix Algebra, Systems of linear equations, Eigen values and Eigen vectors. **Calculus:** Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems. **Differential equations:** First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial and boundary value problems, Partial Differential Equations and variable separable method. Complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis. Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations. **Transform Theory:** Fourier Transform, Laplace Transform, Z-Transform. **ELECTRICAL ENGINEERING** Electric Circuits: Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady-state analysis, Resonance, Passive filters, Ideal current and voltage sources, Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum power transfer theorem, Two-port networks, Three phase circuits, Power and power factor in ac circuits. **Electromagnetic Fields**: Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot-Savart's law, Ampere's law, Curl, Faraday's law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations. Signals and Systems: Representation of continuous and discrete-time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z- Transform. Electrical Machines: Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Auto-transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines. **Power Systems:** Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per-unit quantities, Bus admittance matrix, GaussSeidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over-current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion. **Control Systems:** Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix. **Electrical and Electronic Measurements:** Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multi-meters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis. Analog and Digital Electronics: Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, De- multiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085Microprocessor: Architecture, Programming and Interfacing. **Power Electronics and Drives:** Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation. # ii) Syllabus for candidates applying for M. Tech. (Mechanical Engg. (Thermal)) #### **ENGINEERING MATHEMATICS** **Linear Algebra**: Matrix algebra, systems of linear equations, eigenvalues and eigenvectors. Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Green's theorems. **Differential equations**: First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace's equations. **Complex variables**: Analytic functions; Cauchy-Riemann equations; Cauchy's integral theorem and integral formula; Taylor and Laurent series. **Probability and Statistics**: Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions. **Numerical Methods:** Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpson's rules; single and multi-step methods for differential equations. #### APPLIED MECHANICS AND DESIGN **Engineering Mechanics**: Free-body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions. **Mechanics of Materials**: Stress and strain, elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler's theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength. **Theory of Machines**: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope. **Vibrations:** Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts. **Machine Design:** Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs. #### FLUID MECHANICS AND THERMAL SCIENCES **Fluid Mechanics:** Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings. Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, StefanBoltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis. **Thermodynamics**: Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations. **Applications:** *Power Engineering*: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines. #### MANUFACTURING AND INDUSTRIAL ENGINEERING **Engineering Materials**: Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials. Casting, Forming and Joining Processes: Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding. Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, design of jigs and fixtures. **Metrology and Inspection:** Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly. Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools. **Production Planning and Control:** Forecasting models, aggregate production planning, scheduling, materials requirement planning. **Inventory Control:** Deterministic models; safety stock inventory control systems. **Operations Research**: Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM # iii) Syllabus for candidates applying for M. Tech. (Civil Engineering: Infrastructure Engg. & Management) #### ENGINEERING MATHEMATICS Linear Algebra: Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors. Calculus: Functions of single variable; Limit, continuity and differentiability; Mean value theorems, local maxima and minima, Taylor and Maclaurin series; Evaluation of definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems. **Ordinary Differential Equation (ODE)**: First order (linear and non-linear) equations; higher order linear equations with constant coefficients; Euler-Cauchy equations; Laplace transform and its application in solving linear ODEs; initial and boundary value problems. **Partial Differential Equation** (**PDE**): Fourier series; separation of variables; solutions of one dimensional diffusion equation; first and second order one-dimensional wave equation and two-dimensional Laplace equation. **Probability and Statistics:** Definitions of probability and sampling theorems; Conditional probability; Discrete Random variables: Poisson and Binomial distributions; Continuous random variables: normal and exponential distributions; Descriptive statistics - Mean, median, mode and standard deviation; Hypothesis testing. **Numerical Methods:** Accuracy and precision; error analysis. Numerical solutions of linear and non-linear algebraic equations; Least square approximation, Newton's and Lagrange polynomials, numerical differentiation, Integration by trapezoidal and Simpson's rule, single and multi-step methods for first order differential equations. #### STRUCTURAL ENGINEERING **Engineering Mechanics**: System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Friction and its applications; Kinematics of point mass and rigid body; Centre of mass; Euler's equations of motion; Impulse-momentum; Energy methods; Principles of virtual work. **Solid Mechanics**: Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Theories of failures; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, buckling of column, combined and direct bending stresses. **Structural Analysis**: Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis. Construction Materials and Management: Construction Materials: Structural steel - composition, material properties and behaviour; Concrete - constituents, mix design, short-term and long-term properties; Bricks and mortar; Timber; Bitumen. Construction Management: Types of construction projects; Tendering and construction contracts; Rate analysis and standard specifications; Cost estimation; Project planning and network analysis - PERT and CPM. Concrete Structures: Working stress, Limit state and Ultimate load design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete; Analysis of beam sections at transfer and service loads. **Steel Structures**: Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections - simple and eccentric, beam-column connections, plate girders and trusses; Plastic analysis of beams and frames. #### GEOTECHNICAL ENGINEERING **Soil Mechanics**: Origin of soils, soil structure and fabric; Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability - one dimensional flow, Darcy's law; Seepage through soils - two-dimensional flow, flow nets, uplift pressure, piping; Principle of effective stress, capillarity, seepage force and quicksand condition; Compaction in laboratory and field conditions; Onedimensional consolidation, time rate of consolidation; Mohr's circle, stress paths, effective and total shear strength parameters, characteristics of clays and sand. **Foundation Engineering**: Sub-surface investigations - scope, drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories - Rankine and Coulomb; Stability of slopes - finite and infinite slopes, method of slices and Bishop's method; Stress distribution in soils - Boussinesq's and Westergaard's theories, pressure bulbs; Shallow foundations - Terzaghi's and Meyerhoff's bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations - types of piles, dynamic and static formulae, load capacity of piles in sands and clays, pile load test, negative skin friction. #### WATER RESOURCES ENGINEERING **Fluid Mechanics**: Properties of fluids, fluid statics; Continuity, momentum, energy and corresponding equations; Potential flow, applications of momentum and energy equations; Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth. **Hydraulics**: Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Kinematics of flow, velocity triangles; Basics of hydraulic machines, specific speed of pumps and turbines; Channel Hydraulics - Energy-depth relationships, specific energy, critical flow, slope profile, hydraulic jump, uniform flow and gradually varied flow **Hydrology:** Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, flood estimation and routing, reservoir capacity, reservoir and channel routing, surface run-off models, ground water hydrology - steady state well hydraulics and aquifers; Application of Darcy's law. **Irrigation**: Duty, delta, estimation of evapo-transpiration; Crop water requirements; Design of lined and unlined canals, head works, gravity dams and spillways; Design of weirs on permeable foundation; Types of irrigation systems, irrigation methods; Water logging and drainage; Canal regulatory works, cross-drainage structures, outlets and escapes. #### **ENVIRONMENTAL ENGINEERING** Water and Waste Water: Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary treatment of wastewater, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment. Unit operations and unit processes of domestic wastewater, sludge disposal. **Air Pollution**: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits. **Municipal Solid Wastes**: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal). **Noise Pollution**: Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution. #### TRANSPORTATION ENGINEERING **Transportation Infrastructure**: Highway alignment and engineering surveys; Geometric design of highways - cross-sectional elements, sight distances, horizontal and vertical alignments; Geometric design of railway track; Airport runway length, taxiway and exit taxiway design. **Highway Pavements**: Highway materials - desirable properties and quality control tests; Design of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible pavement using IRC: 37-2012; Design of rigid pavements using IRC: 58-2011; Distresses in concrete pavements. **Traffic Engineering**: Traffic studies on flow, speed, travel time - delay and O-D study, PCU, peak hour factor, parking study, accident study and analysis, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Control devices, signal design by Webster's method; Types of intersections and channelization; Highway capacity and level of service of rural highways and urban roads. Syllabus for candidates applying for M.Tech. (Chemical Engg.) iv) **Engineering Mathematics:** **Linear Algebra:** Matrix algebra, Systems of linear equations, Eigen values and eigenvectors. Calculus: Functions of single variable, Limit, continuity and differentiability, Taylor series, Mean value theorems, Evaluation of definite and improper integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems. **Differential equations:** First order equations (linear and nonlinear), Higher order linear differential equations with constant coefficients, Cauchy's and Euler's equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional heat and wave equations and Laplace equation. **Complex variables:** Complex number, polar form of complex number, triangle inequality. Probability and Statistics: Definitions of probability and sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Poisson, Normal and Binomial distributions, Linear regression analysis. **Numerical Methods:** Numerical solutions of linear and non-linear algebraic equations. Integration by trapezoidal and Simpson's rule. Single and multi-step methods for numerical solution of differential equations. **Process Calculations and Thermodynamics** Steady and unsteady state mass and energy balances including multiphase, multi-component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb's phase rule and degree of freedom analysis. First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium. #### Fluid Mechanics and Mechanical Operations Fluid statics, Newtonian and non-Newtonian fluids, shell-balances including differential form of Bernoulli equation and energy balance, Macroscopic friction factors, dimensional analysis and similitude, flow through pipeline systems, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop. Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids. #### **Heat Transfer** Steady and unsteady heat conduction, convection and radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations. Design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators. #### **Mass Transfer** Fick's laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption. #### **Chemical Reaction Engineering** Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis. #### **Instrumentation and Process Control** Measurement of process variables; sensors, transducers and their dynamics, process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and PID); control valves; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control. #### **Plant Design and Economics** Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipments such as compressors, heat exchangers, multistage contactors. Chemical Technology Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymeriza - v) Syllabus for candidates applying for M.Tech. (Petroleum Engg. / Nuclear Engg. / Energy Systems & Tech. (Focused on Solar Energy)/ Environment Engg. & Studies) - 1. Section A Engineering Mathematics - 2. Any two of Following Sections B to H. - > Section A: Engineering Mathematics (Compulsory) - > Section B: Fluid Mechanics - > Section C: Materials Science - > Section D: Solid Mechanics - > Section E: Thermodynamics - > Section F: Control Systems - > Section G: Electronic Devices - Section H: Environmental Engineering #### **Section A: Engineering Mathematics (Compulsory)** **Linear Algebra:** Matrix Algebra, Systems of linear equations, Eigen values and Eigen vectors. Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green's theorems. **Differential equations:** First order equation (linear and nonlinear), Higher order linear differential equations with constant coefficients, Method of variation of parameters, Cauchy's and Euler's equations, Initial and boundary value problems, Partial Differential Equations and variable separable method. Complex variables: Analytic functions, Cauchy's integral theorem and integral formula, Taylor's and Laurent' series, Residue theorem, solution integrals. Probability and Statistics: Sampling theorems, Conditional probability, Mean, median, mode and standard deviation, Random variables, Discrete and continuous distributions, Poisson, Normal and Binomial distribution, Correlation and regression analysis. Numerical Methods: Solutions of non-linear algebraic equations, single and multi-step methods for differential equations. **Transform Theory:** Fourier Transform, Laplace Transform, Z-Transform. **Section B: Fluid Mechanics** Fluid Mechanics: Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings. Heat-Transfer: Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat M.Tech. Admission 2016 WAT syllabus 14/19 exchanger performance, LMTD and NTU methods; radiative heat transfer, StefanBoltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis. Thermodynamics: Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations. **Applications:** Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air- conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines. **Section C: Materials Science** **Processing of Materials:** Powder synthesis, sintering, chemical methods, crystal growth techniques, zone refining, preparation of nanoparticles and thin films Characterisation Techniques: X-ray diffraction, spectroscopic techniques like UV-vis, IR, Raman. Optical and Electron microscopy **Structure and Imperfections:** Crystal symmetry, point groups, space groups, indices of planes, close packing in solids, bonding in materials, coordination and radius ratio concepts, point defects, dislocations, grain boundaries, surface energy and equilibrium shapes of crystals **Thermodynamics and Kinetics:** Phase rule, phase diagrams, solid solutions, invariant reactions, lever rule, basic heat treatment of metals, solidification and phase transformations, Fick's laws of diffusion, mechanisms of diffusion, temperature dependence of diffusivity **Properties of Materials:** Mechanical Properties: Stress-strain response of metallic, ceramic and polymer materials, yield strength, tensile strength and modulus of elasticity, toughness, plastic deformation, fatigue, creep and fracture **Electronic Properties:** Free electron theory, Fermi energy, density of states, elements of band theory, semiconductors, Hall effect, dielectric behaviour, piezo, ferro, pyroelectricmaterials Magnetic Properties: Origin of magnetism in metallic and ceramic materials, paramagnetism, diamagnetism, ferro and ferrimagnetism **Thermal Properties:** Specific heat, thermal conductivity and thermal expansion, thermoelectricity Optical Properties: Refractive index, absorption and transmission of electromagnetic radiation in solids, electrooptic and magnetooptic materials, spontaneous and stimulated emission, gas and solid state lasers Material types: Concept of amorphous, single crystals and polycrystalline materials, crystallinity and its effect on physical properties, metal, ceramic, polymers, classification of polymers, polymerization, structure and properties, additives for polymer products, processing and applications, effect of environment on materials, composites **Environmental Degradation:** Corrosion, oxidation and prevention Elements of Quantum Mechanics and Mathematics: Basics of quantum mechanics, quantum mechanical treatment of electrical, optical and thermal properties of materials, analytical solid geometry, differentiation and integration, differential equations, vectors and tensors, matrices, Fourier series, complex analysis, probability and statistics **Section D: Solid Mechanics** Equivalent force systems; free-body diagrams; equilibrium equations; analysis of determinate trusses and frames; friction; particle kinematics and dynamics; dynamics of rigid bodies under planar motion; law of conservation of energy; law of conservation of momentum. M.Tech. Admission 2016 WAT syllabus 16/19 Stresses and strains; principal stresses and strains; Mohr's circle for plane stress and plane strain; generalized Hooke's Law; elastic constants; thermal stresses; theories of failure. Axial, shear and bending moment diagrams; axial, shear and bending stresses; combined stresses; deflection (for symmetric bending); torsion in circular shafts; thin walled pressure vessels; energy methods (Castigliano's Theorems); Euler buckling. Free vibration of single degree of freedom systems. #### **Section E: Thermodynamics** **Basic Concepts:** Continuum and macroscopic approach; thermodynamic systems (closed and open); thermodynamic properties and equilibrium; state of a system, state postulate for simple compressible substances, state diagrams, paths and processes on state diagrams; concepts of heat and work, different modes of work; zeroth law of thermodynamics; concept of temperature. **First Law of Thermodynamics:** Concept of energy and various forms of energy; internal energy, enthalpy; specific heats; first law applied to elementary processes, closed systems and control volumes, steady and unsteady flow analysis. **Second Law of Thermodynamics:** Limitations of the first law of thermodynamics, concepts of heat engines and heat pumps/refrigerators, Kelvin-Planck and Clausius statements and their equivalence; reversible and irreversible processes; Carnot cycle and Carnot principles/theorems; thermodynamic temperature scale; Clausius inequality and concept of entropy; microscopic interpretation of entropy, the principle of increase of entropy, T-s diagrams; second law analysis of control volume; availability and irreversibility; third law of thermodynamics. #### **Properties of Pure Substances:** Thermodynamic properties of pure substances in solid, liquid and vapor phases; P-v-T behaviour of simple compressible substances, phase rule, thermodynamic property tables and charts, ideal and real gases, ideal gas equation of state and van der Waals equation of state; law of corresponding states, compressibility factor and generalized compressibility chart. #### **Thermodynamic Relations:** T-ds relations, Helmholtz and Gibbs functions, Gibbs relations, Maxwell relations, Joule-Thomson coefficient, coefficient of volume expansion, adiabatic and isothermal compressibilities, Clapeyron and Clapeyron-Clausius equations. #### **Thermodynamic Cycles:** Carnot vapor cycle, ideal Rankine cycle, Rankine reheat cycle, air-standard Otto cycle, air-standard Diesel cycle, air-standard Brayton cycle, vapor-compression refrigeration cycle. #### **Ideal Gas Mixtures:** Dalton's and Amagat's laws, properties of ideal gas mixtures, air-water vapor mixtures and simple thermodynamic processes involving them; specific and relative humidities, dew point and wet bulb temperature, adiabatic saturation temperature, psychrometric chart. #### **Section F: Control Systems** Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady-state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead-Lag compensators; P, PI and PID controllers; State space model, State transition matrix. #### **Section G: Electronic Devices** Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell; Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography and twin-tub CMOS process. #### **Section H: Environmental Engg.** Water and Waste Water: Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary treatment of wastewater, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment. Unit operations and unit processes of domestic wastewater, sludge disposal. **Air Pollution**: Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits. **Municipal Solid Wastes**: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal). **Noise Pollution**: Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution.