(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0112

	13 1 13	1 1 1 1 1 1 1	
Roll No.			

geobe isan Avid s at most from B.Tech. vd betgeoos and edengend a it ball eve

(SEMESTER-IV) THEORY EXAMINATION, 2011-12

THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours]

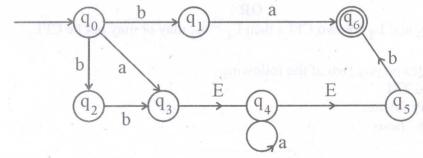
and I palwollol ou of ambrocairmo moss, and [Total Marks: 100

Note: Attempt all Section as directed.

Section - A

1. Attempt all questions. All questions carry equal marks:

 $2\times10=20$


- (a) Define deterministic finite automaton.
- (b) State Mxhill-Nerode theorem.
- (c) Find a regular expression corresponding to the language of all strings over the alphabet {0, 1} that contains at least two 0's.
- (d) Differentiate between Mealy machine and Moore machine.
- (e) Show that the context-free gramma G given by productions $S \to SBS/a$, $B \to b$, is ambiguous.
- (f) What do you mean by inherent ambiguous CFL?
- (g) Compare PDA with FA.
- (h) What do you mean by instantaneous description of PDA?
- (i) When a language is said to be recursive or recursively enumerable?
- (j) What are the ways of representations of TMs?

Section – B

2. Attempt any **three** parts.

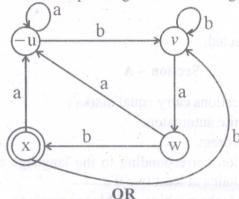
 $3\times10=30$

- (a) Design a Mealy machine that accepts binary string divisible by 3.
- (b) Construct an NFA without E-mores corresponding to the following NFA.

- (c) Show that the language $\{0^n \ 1^n \ 2^n \mid n \ge 1\}$ is not a context free language.
- (d) Construct PDA by empty stack which accepts the following: $\{a^m b^m c^n \mid m, n \ge 1\}$ was at hellit ad at a V limit to me (it regard to it regard).
- (e) For $\Sigma = \{a, b\}$ design a TM that accepts $L = \{a^n b^n \mid n \ge 1\}$.

Section - C

Attempt all questions.


$$5 \times 10 = 50$$

3. Prove that if a language L is accepted by an NFA then there is a DFA that accepts L.

OR vanama

Prove that if L is accepted by an NFA with ∈-transitions, then L is accepted by an NFA without ∈-transitions.

4. Find the regular expression corresponding to the following Finite Automaton:

Show that $L = \{ ww \mid w \in \{a, b\}^* \}$ is not regular.

5. Construct a PDA M equivalent to the grammar with the following productions:

$$S \rightarrow aAA$$

$$A \rightarrow bS \mid aS \mid a$$

Also check whether the string abaaaa is in N(M) or not.

OR

Design 2-stack PDA for language

$$L = \{a^n b^n c^n | n \ge 0\}.$$

6. Convert the following grammar to GNF:

$$S \rightarrow ABA$$

$$A \rightarrow aA \in$$

$$B \rightarrow bB \in$$

OR

Prove that if L_1 and L_2 are two CFLs then $L_1 \cap L_2$ may or may not be CFL.

- 7. Write short notes on any **two** of the following:
 - (a) Universal TM
 - (b) Halting Problem
 - (c) Church's Thesis