Paper I — CALCULUS AND CLASSICAL ALGEBRA

(For those who joined in July 2003 and after)

Time: Three hours Maximum: 100 marks

SECTION A — $(8 \times 5 = 40 \text{ marks})$

Answer any EIGHT questions.

- 1. If $y = \cos x \cos 2x \cos 3x$, find y_n .
- 2. Expand $\log_e(1+x)$ as an infinite series.
- 3. Find the equation of the tangent at the point (3, 1) on the curve $x^2 + 5y^2 = 14$.
- 4. Find the envelope of the family of circles $(x-a)^2 + y^2 = 2a$, where a is the parameter.
 - 5. Prove that $\int_{0}^{\pi/2} \frac{(\sin x)^{3/2}}{(\sin x)^{3/2} + (\cos x)^{3/2}} dx = \frac{\pi}{4}.$
 - 6. Find the reduction formula for $I_n = \int x^n \cos ax \, dx$ (x is a positive integer).

- 7. Prove that a sequence cannot converge to two different limits.
- 8. Test the convergence of the series

$$\frac{1}{3} + \frac{1 \cdot 2}{3 \cdot 5} + \frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} + \cdots$$

- 9. Show that any absolutely convergent series is convergent.
- 10. Sum the series,

$$1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \cdots$$

- 11. Evaluate: $\lim_{x\to 0} \frac{e^x e^{-x}}{\log(1+x)}$.
- 12. Find the sum to x terms of the series $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + \cdots$

SECTION B —
$$(6 \times 10 = 60 \text{ marks})$$

Answer any SIX questions.

13. If $y = a \cos(\log x) + b \sin(\log x)$, prove that $x^2 y_{n+2} + (2n+1) x y_{n+1} + (n^2+1) y_n = 0$.

14. Find the points in the curve

 $y=x^4-6x^3+13x^2-10x+5$, where the tangents are parallel to y=2x and prove that two of these points have the same tangent.

- 15. Show that the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x-2a)^3$.
- 16. Find the reduction formula for $\int \sin^n x \, dx$, and hence the value of $\int_0^{\pi/2} \sin^n x \, dx$, where x is a positive integer.
- 17. Find the Fourier series expansion of $f(x) = \frac{1}{2}(\pi x)$ in the interval $(0, 2\pi)$.
- 18. State and prove comparison test.
- 19. State and prove Cauchy's integral test.
- 20. Sum the series

$$\frac{5}{3 \cdot 6} + \frac{5 \cdot 7}{3 \cdot 6 \cdot 9} + \frac{5 \cdot 7 \cdot 9}{3 \cdot 6 \cdot 9 \cdot 12} + \cdots$$

3

21. Show that, if x > 0

$$\log x = \frac{x-1}{x+1} + \frac{1}{2} \cdot \frac{x^2-1}{(x+1)^2} + \frac{1}{3} \cdot \frac{x^3-1}{(x+1)^3} + \cdots$$

22. Sum the series $\sum_{n=0}^{\infty} \frac{(n+1)^3}{x!} x^n.$

- 18. Find the centre and the radius of the circle of intersection of the plane 2x 2y + z = 27 and $x^2 + y^2 + z^2 = 225$.
- 19. Find the volume of the tetrahedron formed by the planes whose equations are y + z = 0, z + x = 0, x + y = 0 and x + y + z = 1.
- 20. With usual notations, prove the following:
 - (a) $curl(\vec{F} + \vec{G}) = curl(\vec{F} + curl(\vec{G}))$.
 - (b) $Div(\vec{F} \times \vec{G}) = \vec{G}.curl(\vec{F} \vec{F}.curl(\vec{G}).$
- 21. Evaluate $\iint_S \vec{F} \cdot \vec{n} \, ds$ where $\vec{F} = 4xz \, \vec{i} y^2 \, \vec{j} + yz \, \vec{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 22. Verify Stoke's theorem for the function $\vec{F} = x^2 \vec{i} + xy \vec{j}$ integrated around the sides x = 0, y = 0, x = a, y = a of a square in the z = 0 plane.

7193/M12

OCTOBER 2008

Paper II — TRIGONOMETRY, ANALYTICAL GEOMETRY OF THREE DIMENSIONS AND VECTOR CALCULUS

(For those who joined in July 2003 and after)

Time: Three hours Maximum: 100 marks

SECTION A — $(8 \times 5 = 40 \text{ marks})$

Answer any EIGHT questions

- 1. Prove that the three points representing $5 + 8i \cdot 13 + 20i$ and 19 + 29i are collinear.
- 2. If tan(x + iy) = u + iv prove that $\frac{u}{v} = \frac{\sin 2x}{\sinh 2y}$.
- 3. Find the equation of the plane passing through (2,2,1) and (9,3,6) and perpendicular to the plane 2x + 6y + 6z = 9.
- 4. Find the point where the line $\frac{x-2}{2} = \frac{y-4}{-3} = \frac{z+6}{-4}$ meets the plane 2x + 4y z 2 = 0.
- 5. Find the angle between the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{-2}$ and the plane x+2y+z-3=0.

6. Find the equation to the plane containing the line
$$\frac{x-1}{1} = \frac{y}{2} = \frac{z+1}{3}$$
 and parallel to the line $\frac{x-2}{3} = \frac{y-4}{1} = \frac{z-5}{2}$.

- 7. Find the equation of the sphere which has its centre at (6, -1, 2) and touches the plane 2x y + 2z 2 = 0.
- 8. Find the equation of the cone whose vertex is (1, 2, 3) and guiding curve is the circle $x^2 + y^2 + z^2 = 4$, x + y + z = 1.
- 9. Prove that the directional derivative of $f(x,y,z) = z^2x + y^3$ at (1, 1, 2) in the direction $\left[\frac{1}{\sqrt{5}}\right]\vec{i} + \left[\frac{2}{\sqrt{5}}\right]\vec{j}$ is $2\sqrt{5}$.
- 10. Prove that $\frac{y}{x^2 + y^2}\vec{i} \frac{x}{x^2 + y^2}\vec{j}$ is irrotational.
- 11. Compute $\int_{D} \sin(x+y) dx dy$ where $D = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right].$

12. If
$$S$$
 is any closed surface enclosing a volume V and $\vec{F} = ax \vec{i} + by \vec{j} + cz \vec{k}$, prove that
$$\int \vec{F} \cdot \vec{dS} = (a + b + c) V.$$

SECTION B —
$$(6 \times 10 = 60 \text{ marks})$$

Answer any SIX questions.

- 13. Express $\cos^4\theta\sin^3\theta$ in a series of sines of multiples of θ .
- 14. Find the sum to n terms of the series $\sin \alpha + c \sin(\alpha + \beta) + c^2 \sin(\alpha + 2\beta) + \dots$
- 15. A plane meets the coordinate axis at A, B, C such that the centroid of the $\triangle ABC$ is the point (α, β, λ) .

Prove that the equation of the plane is $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\lambda} = 3$.

- 16. The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A,B,C. Find the coordinates of the orthocentre of the triangle ABC.
- 17. Find the shortest distance between the lines

$$\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}; \quad \frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}.$$

3

7193/M12